Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.llms import CTransformers # For loading transformer models.
|
6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
7 |
-
from langchain.vectorstores import FAISS
|
8 |
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
from langchain.memory import ConversationBufferMemory
|
@@ -21,12 +21,17 @@ def get_pdf_text(pdf_docs):
|
|
21 |
|
22 |
|
23 |
def get_text_chunks(text):
|
24 |
-
text_splitter =
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
length_function=len
|
29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
chunks = text_splitter.split_text(text)
|
31 |
return chunks
|
32 |
|
@@ -37,14 +42,17 @@ def get_vectorstore(text_chunks):
|
|
37 |
model_kwargs={'device': 'cpu'})
|
38 |
# embeddings = OpenAIEmbeddings()
|
39 |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
40 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
|
|
|
|
41 |
return vectorstore
|
42 |
|
43 |
|
44 |
def get_conversation_chain(vectorstore):
|
45 |
# llm = ChatOpenAI()
|
46 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
47 |
-
|
|
|
48 |
memory = ConversationBufferMemory(
|
49 |
memory_key='chat_history', return_messages=True)
|
50 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
|
5 |
from langchain.llms import CTransformers # For loading transformer models.
|
6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS, Chroma
|
8 |
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
from langchain.memory import ConversationBufferMemory
|
|
|
21 |
|
22 |
|
23 |
def get_text_chunks(text):
|
24 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
25 |
+
chunk_size = 300,
|
26 |
+
chunk_overlap = 20,
|
27 |
+
length_function= len
|
|
|
28 |
)
|
29 |
+
# text_splitter = CharacterTextSplitter(
|
30 |
+
# separator="\n",
|
31 |
+
# chunk_size=1000,
|
32 |
+
# chunk_overlap=200,
|
33 |
+
# length_function=len
|
34 |
+
# )
|
35 |
chunks = text_splitter.split_text(text)
|
36 |
return chunks
|
37 |
|
|
|
42 |
model_kwargs={'device': 'cpu'})
|
43 |
# embeddings = OpenAIEmbeddings()
|
44 |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
45 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
46 |
+
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)
|
47 |
+
|
48 |
return vectorstore
|
49 |
|
50 |
|
51 |
def get_conversation_chain(vectorstore):
|
52 |
# llm = ChatOpenAI()
|
53 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
54 |
+
config = {'max_new_tokens': 2048}
|
55 |
+
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", config=config)
|
56 |
memory = ConversationBufferMemory(
|
57 |
memory_key='chat_history', return_messages=True)
|
58 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|