tonyassi's picture
Upload 4 files
48726ec verified
raw
history blame
2.54 kB
import gradio as gr
import numpy as np
from transformers import AutoFeatureExtractor, AutoModel
from datasets import load_dataset
from PIL import Image, ImageDraw
import os
# Load model for computing embeddings of the candidate images
print('Load model for computing embeddings of the candidate images')
model_ckpt = "google/vit-base-patch16-224"
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
model = AutoModel.from_pretrained(model_ckpt)
hidden_dim = model.config.hidden_size
# Load dataset
dataset_with_embeddings = load_dataset("tonyassi/vogue-runway-top15-512px-nobg-embeddings2", split="train")
dataset_with_embeddings.add_faiss_index(column='embeddings')
def get_neighbors(query_image, top_k=10):
qi_embedding = model(**extractor(query_image, return_tensors="pt"))
qi_embedding = qi_embedding.last_hidden_state[:, 0].detach().numpy().squeeze()
scores, retrieved_examples = dataset_with_embeddings.get_nearest_examples('embeddings', qi_embedding, k=top_k)
return scores, retrieved_examples
def search(image_dict):
# Open query image
query_image = Image.open(image_dict['composite']).convert(mode='RGB')
# Get similar image
scores, retrieved_examples = get_neighbors(query_image)
#final_md = ""
# Create result diction for gr.Gallery
result = []
for i in range(len(retrieved_examples["image"])):
id = retrieved_examples["label"][i]
print('id', id)
label = dataset_with_embeddings.features["label"].names[id]
print('label', label)
result.append((retrieved_examples["image"][i], label))
return result, query_image
iface = gr.Interface(fn=search,
title='Sketch to Fashion Collection',
description="""
Tony Assi
""",
inputs=gr.ImageEditor(label='Sketchpad' ,type='filepath', value={'background':'./model2.png', 'layers':None, 'composite':None}, sources=['upload'], transforms=[]),
outputs=[gr.Gallery(label='Similar', object_fit='contain', height=900), gr.Image()],
#examples=[[{'background':'./images/goth.jpg', 'layers':None, 'composite':'./images/goth.jpg'}],[{'background':'./images/pink.jpg', 'layers':None, 'composite':'./images/pink.jpg'}], [{'background':'./images/boot.jpg', 'layers':None, 'composite':'./images/boot.jpg'}]],
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"),)
iface.launch()