Spaces:
Sleeping
Sleeping
import gradio as gr | |
import huggingface_hub | |
import onnxruntime as rt | |
import numpy as np | |
import cv2 | |
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from fastapi.responses import Response | |
import io | |
from PIL import Image | |
import imghdr | |
from typing import Optional | |
SUPPORTED_FORMATS = {'jpg', 'jpeg', 'png', 'bmp', 'webp', 'tiff'} | |
def is_valid_image(file_content: bytes) -> Optional[str]: | |
image_format = imghdr.what(None, file_content) | |
if image_format is None: | |
return None | |
return image_format.lower() | |
def process_image_bytes(image_bytes: bytes) -> np.ndarray: | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) | |
if image.mode == 'RGBA': | |
image = image.convert('RGB') | |
img_array = np.array(image) | |
return img_array | |
except Exception as e: | |
raise HTTPException(status_code=400, detail=f"Error: {str(e)}") | |
def get_mask(img, s=1024): | |
img = (img / 255).astype(np.float32) | |
h, w = h0, w0 = img.shape[:-1] | |
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) | |
ph, pw = s - h, s - w | |
img_input = np.zeros([s, s, 3], dtype=np.float32) | |
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) | |
img_input = np.transpose(img_input, (2, 0, 1)) | |
img_input = img_input[np.newaxis, :] | |
mask = rmbg_model.run(None, {'img': img_input})[0][0] | |
mask = np.transpose(mask, (1, 2, 0)) | |
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] | |
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis] | |
return mask | |
def rmbg_fn(img): | |
mask = get_mask(img) | |
img = (mask * img + 255 * (1 - mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
img = np.concatenate([img, mask], axis=2, dtype=np.uint8) | |
mask = mask.repeat(3, axis=2) | |
return mask, img | |
app = FastAPI() | |
gradio_app = gr.Blocks() | |
with gradio_app: | |
gr.Markdown("# Anime Remove Background\n\n" | |
"![visitor badge](https://api.visitorbadge.io/api/visitors?path=skytnt.animeseg&countColor=%23263759&style=flat&labelStyle=lower)\n\n" | |
"demo for [https://github.com/SkyTNT/anime-segmentation/](https://github.com/SkyTNT/anime-segmentation/)") | |
with gr.Column(): | |
input_img = gr.Image(label="input image") | |
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)] | |
examples = gr.Examples(examples=examples_data, inputs=[input_img]) | |
run_btn = gr.Button(variant="primary") | |
with gr.Row(): | |
output_mask = gr.Image(label="mask", format="png") | |
output_img = gr.Image(label="result", image_mode="RGBA", format="png") | |
run_btn.click(rmbg_fn, [input_img], [output_mask, output_img]) | |
async def remove_background(file: UploadFile = File(...)): | |
contents = await file.read() | |
image_format = is_valid_image(contents) | |
if not image_format or image_format not in SUPPORTED_FORMATS: | |
raise HTTPException( | |
status_code=400, | |
detail=f"Invalid format: {', '.join(SUPPORTED_FORMATS)}" | |
) | |
try: | |
img = process_image_bytes(contents) | |
mask = get_mask(img) | |
img = (mask * img + 255 * (1 - mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
img = np.concatenate([img, mask], axis=2, dtype=np.uint8) | |
pil_image = Image.fromarray(img, 'RGBA') | |
img_byte_arr = io.BytesIO() | |
pil_image.save(img_byte_arr, format='PNG') | |
img_byte_arr = img_byte_arr.getvalue() | |
return Response( | |
content=img_byte_arr, | |
media_type="image/png", | |
headers={ | |
"Content-Disposition": f"attachment; filename={file.filename.split('.')[0]}_nobg.png" | |
} | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") | |
if __name__ == "__main__": | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx") | |
rmbg_model = rt.InferenceSession(model_path, providers=providers) | |
app = gr.mount_gradio_app(app, gradio_app, path="/") | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |