File size: 5,487 Bytes
1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import html
import os
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
import piexif
import piexif.helper
import PIL.Image
from Utils import dbimutils
TITLE = "WaifuDiffusion v1.4 Tags"
DESCRIPTION = """
Demo for [SmilingWolf/wd-v1-4-vit-tagger](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger) with "ready to copy" prompt and a prompt analyzer.
Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
"""
HF_TOKEN = os.environ["HF_TOKEN"]
MODEL_REPO = "SmilingWolf/wd-v1-4-vit-tagger"
MODEL_FILENAME = "ViTB16_11_07_2022_18h19m14s.onnx"
LABEL_FILENAME = "selected_tags.csv"
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-threshold", type=float, default=0.35)
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def load_model() -> rt.InferenceSession:
path = huggingface_hub.hf_hub_download(
MODEL_REPO, MODEL_FILENAME, use_auth_token=HF_TOKEN
)
model = rt.InferenceSession(path)
return model
def load_labels() -> list[str]:
path = huggingface_hub.hf_hub_download(
MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
)
df = pd.read_csv(path)["name"].tolist()
return df
def plaintext_to_html(text):
text = (
"<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
)
return text
def predict(
image: PIL.Image.Image,
score_threshold: float,
model: rt.InferenceSession,
labels: list[str],
):
rawimage = image
_, height, width, _ = model.get_inputs()[0].shape
# Alpha to white
image = image.convert("RGBA")
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
new_image.paste(image, mask=image)
image = new_image.convert("RGB")
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = dbimutils.make_square(image, height)
image = dbimutils.smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
input_name = model.get_inputs()[0].name
label_name = model.get_outputs()[0].name
probs = model.run([label_name], {input_name: image})[0]
labels = list(zip(labels, probs[0].astype(float)))
# First 4 labels are actually ratings: pick one with argmax
ratings_names = labels[:4]
rating = dict(ratings_names)
# Everything else is tags: pick any where prediction confidence > threshold
tags_names = labels[4:]
res = [x for x in tags_names if x[1] > score_threshold]
res = dict(res)
b = dict(sorted(res.items(), key=lambda item: item[1], reverse=True))
a = (
", ".join(list(b.keys()))
.replace("_", " ")
.replace("(", "\(")
.replace(")", "\)")
)
c = ", ".join(list(b.keys()))
items = rawimage.info
geninfo = ""
if "exif" in rawimage.info:
exif = piexif.load(rawimage.info["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode("utf8", errors="ignore")
items["exif comment"] = exif_comment
geninfo = exif_comment
for field in [
"jfif",
"jfif_version",
"jfif_unit",
"jfif_density",
"dpi",
"exif",
"loop",
"background",
"timestamp",
"duration",
]:
items.pop(field, None)
geninfo = items.get("parameters", geninfo)
info = f"""
<p><h4>PNG Info</h4></p>
"""
for key, text in items.items():
info += (
f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()
+ "\n"
)
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return (a, c, rating, res, info)
def main():
args = parse_args()
model = load_model()
labels = load_labels()
func = functools.partial(predict, model=model, labels=labels)
gr.Interface(
fn=func,
inputs=[
gr.Image(type="pil", label="Input"),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_threshold,
label="Score Threshold",
),
],
outputs=[
gr.Textbox(label="Output (string)"),
gr.Textbox(label="Output (raw string)"),
gr.Label(label="Rating"),
gr.Label(label="Output (label)"),
gr.HTML(),
],
examples=[["power.jpg", 0.5]],
title=TITLE,
description=DESCRIPTION,
allow_flagging="never",
).launch(
enable_queue=True,
share=args.share,
)
if __name__ == "__main__":
main()
|