File size: 8,297 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import math

import cv2
import numpy as np
import torch
import PIL
from PIL import Image, ImageDraw, ImageFont
import random

def str2bool(v):
    return v.lower() in ('true', 'yes', 't', 'y', '1')


def str2int_tuple(v):
    return tuple([int(i.strip()) for i in v.split(',')])


def init_args():
    parser = argparse.ArgumentParser()
    # params for prediction engine
    parser.add_argument('--use_gpu', type=str2bool, default=False)

    # params for text detector
    parser.add_argument('--image_dir', type=str)
    parser.add_argument('--det_algorithm', type=str, default='DB')
    parser.add_argument('--det_model_dir', type=str)
    parser.add_argument('--det_limit_side_len', type=float, default=960)
    parser.add_argument('--det_limit_type', type=str, default='max')
    parser.add_argument('--det_box_type', type=str, default='quad')

    # DB parmas
    parser.add_argument('--det_db_thresh', type=float, default=0.3)
    parser.add_argument('--det_db_box_thresh', type=float, default=0.6)
    parser.add_argument('--det_db_unclip_ratio', type=float, default=1.5)
    parser.add_argument('--max_batch_size', type=int, default=10)
    parser.add_argument('--use_dilation', type=str2bool, default=False)
    parser.add_argument('--det_db_score_mode', type=str, default='fast')

    # params for text recognizer
    parser.add_argument('--rec_algorithm', type=str, default='SVTR_LCNet')
    parser.add_argument('--rec_model_dir', type=str)
    parser.add_argument('--rec_image_inverse', type=str2bool, default=True)
    parser.add_argument('--rec_image_shape', type=str, default='3, 48, 320')
    parser.add_argument('--rec_batch_num', type=int, default=6)
    parser.add_argument('--max_text_length', type=int, default=25)
    parser.add_argument('--vis_font_path',
                        type=str,
                        default='./doc/fonts/simfang.ttf')
    parser.add_argument('--drop_score', type=float, default=0.5)

    # params for text classifier
    parser.add_argument('--use_angle_cls', type=str2bool, default=False)
    parser.add_argument('--cls_model_dir', type=str)
    parser.add_argument('--cls_image_shape', type=str, default='3, 48, 192')
    parser.add_argument('--label_list', type=list, default=['0', '180'])
    parser.add_argument('--cls_batch_num', type=int, default=6)
    parser.add_argument('--cls_thresh', type=float, default=0.9)

    parser.add_argument('--warmup', type=str2bool, default=False)

    #
    parser.add_argument('--output', type=str, default='./inference_results')
    parser.add_argument('--save_crop_res', type=str2bool, default=False)
    parser.add_argument('--crop_res_save_dir', type=str, default='./output')

    # multi-process
    parser.add_argument('--use_mp', type=str2bool, default=False)
    parser.add_argument('--total_process_num', type=int, default=1)
    parser.add_argument('--process_id', type=int, default=0)

    parser.add_argument('--show_log', type=str2bool, default=True)
    return parser


def parse_args():
    parser = init_args()
    return parser.parse_args()

def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"):
    font_size = int(sz[1] * 0.99)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    if int(PIL.__version__.split(".")[0]) < 10:
        length = font.getsize(txt)[0]
    else:
        length = font.getlength(txt)

    if length > sz[0]:
        font_size = int(font_size * sz[0] / length)
        font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    return font

def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"):
    box_height = int(
        math.sqrt((box[0][0] - box[3][0]) ** 2 + (box[0][1] - box[3][1]) ** 2)
    )
    box_width = int(
        math.sqrt((box[0][0] - box[1][0]) ** 2 + (box[0][1] - box[1][1]) ** 2)
    )

    if box_height > 2 * box_width and box_height > 30:
        img_text = Image.new("RGB", (box_height, box_width), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_height, box_width), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
        img_text = img_text.transpose(Image.ROTATE_270)
    else:
        img_text = Image.new("RGB", (box_width, box_height), (255, 255, 255))
        draw_text = ImageDraw.Draw(img_text)
        if txt:
            font = create_font(txt, (box_width, box_height), font_path)
            draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)

    pts1 = np.float32(
        [[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]]
    )
    pts2 = np.array(box, dtype=np.float32)
    M = cv2.getPerspectiveTransform(pts1, pts2)

    img_text = np.array(img_text, dtype=np.uint8)
    img_right_text = cv2.warpPerspective(
        img_text,
        M,
        img_size,
        flags=cv2.INTER_NEAREST,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=(255, 255, 255),
    )
    return img_right_text

def draw_ocr_box_txt(
    image,
    boxes,
    txts=None,
    scores=None,
    drop_score=0.5,
    font_path="./doc/fonts/simfang.ttf",
):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
    random.seed(0)

    draw_left = ImageDraw.Draw(img_left)
    if txts is None or len(txts) != len(boxes):
        txts = [None] * len(boxes)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
        color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
        if isinstance(box[0], list):
            box = list(map(tuple, box))
        draw_left.polygon(box, fill=color)
        img_right_text = draw_box_txt_fine((w, h), box, txt, font_path)
        pts = np.array(box, np.int32).reshape((-1, 1, 2))
        cv2.polylines(img_right_text, [pts], True, color, 1)
        img_right = cv2.bitwise_and(img_right, img_right_text)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new("RGB", (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
    return np.array(img_show)


def get_rotate_crop_image(img, points):
    """
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    """
    assert len(points) == 4, 'shape of points must be 4*2'
    img_crop_width = int(
        max(np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([
        [0, 0],
        [img_crop_width, 0],
        [img_crop_width, img_crop_height],
        [0, img_crop_height],
    ])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M,
        (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC,
    )
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


def get_minarea_rect_crop(img, points):
    bounding_box = cv2.minAreaRect(np.array(points).astype(np.int32))
    points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

    index_a, index_b, index_c, index_d = 0, 1, 2, 3
    if points[1][1] > points[0][1]:
        index_a = 0
        index_d = 1
    else:
        index_a = 1
        index_d = 0
    if points[3][1] > points[2][1]:
        index_b = 2
        index_c = 3
    else:
        index_b = 3
        index_c = 2

    box = [points[index_a], points[index_b], points[index_c], points[index_d]]
    crop_img = get_rotate_crop_image(img, np.array(box))
    return crop_img


def check_gpu(use_gpu):
    if use_gpu and not torch.cuda.is_available():
        use_gpu = False
    return use_gpu


if __name__ == '__main__':
    pass