Spaces:
Running
Running
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
class SEModule(nn.Module): | |
def __init__(self, in_channels, reduction=4): | |
super(SEModule, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.conv1 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=in_channels // reduction, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
self.conv2 = nn.Conv2d( | |
in_channels=in_channels // reduction, | |
out_channels=in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward(self, inputs): | |
outputs = self.avg_pool(inputs) | |
outputs = self.conv1(outputs) | |
outputs = F.relu(outputs) | |
outputs = self.conv2(outputs) | |
outputs = F.hardsigmoid(outputs) | |
return inputs * outputs | |
class IntraCLBlock(nn.Module): | |
def __init__(self, in_channels=96, reduce_factor=4): | |
super(IntraCLBlock, self).__init__() | |
self.channels = in_channels | |
self.rf = reduce_factor | |
# weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.conv1x1_reduce_channel = nn.Conv2d(self.channels, | |
self.channels // self.rf, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.conv1x1_return_channel = nn.Conv2d(self.channels // self.rf, | |
self.channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v_layer_7x1 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(7, 1), | |
stride=(1, 1), | |
padding=(3, 0), | |
) | |
self.v_layer_5x1 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(5, 1), | |
stride=(1, 1), | |
padding=(2, 0), | |
) | |
self.v_layer_3x1 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(3, 1), | |
stride=(1, 1), | |
padding=(1, 0), | |
) | |
self.q_layer_1x7 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(1, 7), | |
stride=(1, 1), | |
padding=(0, 3), | |
) | |
self.q_layer_1x5 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(1, 5), | |
stride=(1, 1), | |
padding=(0, 2), | |
) | |
self.q_layer_1x3 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(1, 3), | |
stride=(1, 1), | |
padding=(0, 1), | |
) | |
# base | |
self.c_layer_7x7 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(7, 7), | |
stride=(1, 1), | |
padding=(3, 3), | |
) | |
self.c_layer_5x5 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(5, 5), | |
stride=(1, 1), | |
padding=(2, 2), | |
) | |
self.c_layer_3x3 = nn.Conv2d( | |
self.channels // self.rf, | |
self.channels // self.rf, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
) | |
self.bn = nn.BatchNorm2d(self.channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
x_new = self.conv1x1_reduce_channel(x) | |
x_7_c = self.c_layer_7x7(x_new) | |
x_7_v = self.v_layer_7x1(x_new) | |
x_7_q = self.q_layer_1x7(x_new) | |
x_7 = x_7_c + x_7_v + x_7_q | |
x_5_c = self.c_layer_5x5(x_7) | |
x_5_v = self.v_layer_5x1(x_7) | |
x_5_q = self.q_layer_1x5(x_7) | |
x_5 = x_5_c + x_5_v + x_5_q | |
x_3_c = self.c_layer_3x3(x_5) | |
x_3_v = self.v_layer_3x1(x_5) | |
x_3_q = self.q_layer_1x3(x_5) | |
x_3 = x_3_c + x_3_v + x_3_q | |
x_relation = self.conv1x1_return_channel(x_3) | |
x_relation = self.bn(x_relation) | |
x_relation = self.relu(x_relation) | |
return x + x_relation | |
class DSConv(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding, | |
stride=1, | |
groups=None, | |
if_act=True, | |
act='relu', | |
**kwargs, | |
): | |
super(DSConv, self).__init__() | |
if groups is None: | |
groups = in_channels | |
self.if_act = if_act | |
self.act = act | |
self.conv1 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm2d(num_features=in_channels) | |
self.conv2 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=int(in_channels * 4), | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
) | |
self.bn2 = nn.BatchNorm2d(num_features=int(in_channels * 4)) | |
self.conv3 = nn.Conv2d( | |
in_channels=int(in_channels * 4), | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
) | |
self._c = [in_channels, out_channels] | |
if in_channels != out_channels: | |
self.conv_end = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
bias=False, | |
) | |
def forward(self, inputs): | |
x = self.conv1(inputs) | |
x = self.bn1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
if self.if_act: | |
if self.act == 'relu': | |
x = F.relu(x) | |
elif self.act == 'hardswish': | |
x = F.hardswish(x) | |
else: | |
print('The activation function({}) is selected incorrectly.'. | |
format(self.act)) | |
exit() | |
x = self.conv3(x) | |
if self._c[0] != self._c[1]: | |
x = x + self.conv_end(inputs) | |
return x | |
class DBFPN(nn.Module): | |
def __init__(self, in_channels, out_channels, use_asf=False, **kwargs): | |
super(DBFPN, self).__init__() | |
self.out_channels = out_channels | |
self.use_asf = use_asf | |
# weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.in2_conv = nn.Conv2d( | |
in_channels=in_channels[0], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
bias=False, | |
) | |
self.in3_conv = nn.Conv2d( | |
in_channels=in_channels[1], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
bias=False, | |
) | |
self.in4_conv = nn.Conv2d( | |
in_channels=in_channels[2], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
bias=False, | |
) | |
self.in5_conv = nn.Conv2d( | |
in_channels=in_channels[3], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
bias=False, | |
) | |
self.p5_conv = nn.Conv2d( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
) | |
self.p4_conv = nn.Conv2d( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
) | |
self.p3_conv = nn.Conv2d( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
) | |
self.p2_conv = nn.Conv2d( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
) | |
if self.use_asf is True: | |
self.asf = ASFBlock(self.out_channels, self.out_channels // 4) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
in5 = self.in5_conv(c5) | |
in4 = self.in4_conv(c4) | |
in3 = self.in3_conv(c3) | |
in2 = self.in2_conv(c2) | |
out4 = in4 + F.interpolate( | |
in5, scale_factor=2, mode='nearest', align_corners=None) # 1/16 | |
out3 = in3 + F.interpolate( | |
out4, scale_factor=2, mode='nearest', align_corners=None) # 1/8 | |
out2 = in2 + F.interpolate( | |
out3, scale_factor=2, mode='nearest', align_corners=None) # 1/4 | |
p5 = self.p5_conv(in5) | |
p4 = self.p4_conv(out4) | |
p3 = self.p3_conv(out3) | |
p2 = self.p2_conv(out2) | |
p5 = F.interpolate(p5, | |
scale_factor=8, | |
mode='nearest', | |
align_corners=None) | |
p4 = F.interpolate(p4, | |
scale_factor=4, | |
mode='nearest', | |
align_corners=None) | |
p3 = F.interpolate(p3, | |
scale_factor=2, | |
mode='nearest', | |
align_corners=None) | |
fuse = torch.concat([p5, p4, p3, p2], dim=1) | |
if self.use_asf is True: | |
fuse = self.asf(fuse, [p5, p4, p3, p2]) | |
return fuse | |
class RSELayer(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, shortcut=True): | |
super(RSELayer, self).__init__() | |
# weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.out_channels = out_channels | |
self.in_conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
kernel_size=kernel_size, | |
padding=int(kernel_size // 2), | |
# weight_attr=ParamAttr(initializer=weight_attr), | |
bias=False, | |
) | |
self.se_block = SEModule(self.out_channels) | |
self.shortcut = shortcut | |
def forward(self, ins): | |
x = self.in_conv(ins) | |
if self.shortcut: | |
out = x + self.se_block(x) | |
else: | |
out = self.se_block(x) | |
return out | |
class RSEFPN(nn.Module): | |
def __init__(self, in_channels, out_channels, shortcut=True, **kwargs): | |
super(RSEFPN, self).__init__() | |
self.out_channels = out_channels | |
self.ins_conv = nn.ModuleList() | |
self.inp_conv = nn.ModuleList() | |
self.intracl = False | |
if 'intracl' in kwargs.keys() and kwargs['intracl'] is True: | |
self.intracl = kwargs['intracl'] | |
self.incl1 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl2 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl3 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl4 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
for i in range(len(in_channels)): | |
self.ins_conv.append( | |
RSELayer(in_channels[i], | |
out_channels, | |
kernel_size=1, | |
shortcut=shortcut)) | |
self.inp_conv.append( | |
RSELayer(out_channels, | |
out_channels // 4, | |
kernel_size=3, | |
shortcut=shortcut)) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
in5 = self.ins_conv[3](c5) | |
in4 = self.ins_conv[2](c4) | |
in3 = self.ins_conv[1](c3) | |
in2 = self.ins_conv[0](c2) | |
out4 = in4 + F.interpolate( | |
in5, scale_factor=2, mode='nearest', align_corners=None) # 1/16 | |
out3 = in3 + F.interpolate( | |
out4, scale_factor=2, mode='nearest', align_corners=None) # 1/8 | |
out2 = in2 + F.interpolate( | |
out3, scale_factor=2, mode='nearest', align_corners=None) # 1/4 | |
p5 = self.inp_conv[3](in5) | |
p4 = self.inp_conv[2](out4) | |
p3 = self.inp_conv[1](out3) | |
p2 = self.inp_conv[0](out2) | |
if self.intracl is True: | |
p5 = self.incl4(p5) | |
p4 = self.incl3(p4) | |
p3 = self.incl2(p3) | |
p2 = self.incl1(p2) | |
p5 = F.interpolate(p5, | |
scale_factor=8, | |
mode='nearest', | |
align_corners=None) | |
p4 = F.interpolate(p4, | |
scale_factor=4, | |
mode='nearest', | |
align_corners=None) | |
p3 = F.interpolate(p3, | |
scale_factor=2, | |
mode='nearest', | |
align_corners=None) | |
fuse = torch.concat([p5, p4, p3, p2], dim=1) | |
return fuse | |
class LKPAN(nn.Module): | |
def __init__(self, in_channels, out_channels, mode='large', **kwargs): | |
super(LKPAN, self).__init__() | |
self.out_channels = out_channels | |
# weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.ins_conv = nn.ModuleList() | |
self.inp_conv = nn.ModuleList() | |
# pan head | |
self.pan_head_conv = nn.ModuleList() | |
self.pan_lat_conv = nn.ModuleList() | |
if mode.lower() == 'lite': | |
p_layer = DSConv | |
elif mode.lower() == 'large': | |
p_layer = nn.Conv2D | |
else: | |
raise ValueError( | |
"mode can only be one of ['lite', 'large'], but received {}". | |
format(mode)) | |
for i in range(len(in_channels)): | |
self.ins_conv.append( | |
nn.Conv2d( | |
in_channels=in_channels[i], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
bias=False, | |
)) | |
self.inp_conv.append( | |
p_layer( | |
in_channels=self.out_channels, | |
out_channels=self.out_channels // 4, | |
kernel_size=9, | |
padding=4, | |
bias=False, | |
)) | |
if i > 0: | |
self.pan_head_conv.append( | |
nn.Conv2d( | |
in_channels=self.out_channels // 4, | |
out_channels=self.out_channels // 4, | |
kernel_size=3, | |
padding=1, | |
stride=2, | |
bias=False, | |
)) | |
self.pan_lat_conv.append( | |
p_layer( | |
in_channels=self.out_channels // 4, | |
out_channels=self.out_channels // 4, | |
kernel_size=9, | |
padding=4, | |
bias=False, | |
)) | |
self.intracl = False | |
if 'intracl' in kwargs.keys() and kwargs['intracl'] is True: | |
self.intracl = kwargs['intracl'] | |
self.incl1 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl2 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl3 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
self.incl4 = IntraCLBlock(self.out_channels // 4, reduce_factor=2) | |
def forward(self, x): | |
c2, c3, c4, c5 = x | |
in5 = self.ins_conv[3](c5) | |
in4 = self.ins_conv[2](c4) | |
in3 = self.ins_conv[1](c3) | |
in2 = self.ins_conv[0](c2) | |
out4 = in4 + F.interpolate( | |
in5, scale_factor=2, mode='nearest', align_corners=None) # 1/16 | |
out3 = in3 + F.interpolate( | |
out4, scale_factor=2, mode='nearest', align_corners=None) # 1/8 | |
out2 = in2 + F.interpolate( | |
out3, scale_factor=2, mode='nearest', align_corners=None) # 1/4 | |
f5 = self.inp_conv[3](in5) | |
f4 = self.inp_conv[2](out4) | |
f3 = self.inp_conv[1](out3) | |
f2 = self.inp_conv[0](out2) | |
pan3 = f3 + self.pan_head_conv[0](f2) | |
pan4 = f4 + self.pan_head_conv[1](pan3) | |
pan5 = f5 + self.pan_head_conv[2](pan4) | |
p2 = self.pan_lat_conv[0](f2) | |
p3 = self.pan_lat_conv[1](pan3) | |
p4 = self.pan_lat_conv[2](pan4) | |
p5 = self.pan_lat_conv[3](pan5) | |
if self.intracl is True: | |
p5 = self.incl4(p5) | |
p4 = self.incl3(p4) | |
p3 = self.incl2(p3) | |
p2 = self.incl1(p2) | |
p5 = F.interpolate(p5, | |
scale_factor=8, | |
mode='nearest', | |
align_corners=None) | |
p4 = F.interpolate(p4, | |
scale_factor=4, | |
mode='nearest', | |
align_corners=None) | |
p3 = F.interpolate(p3, | |
scale_factor=2, | |
mode='nearest', | |
align_corners=None) | |
fuse = torch.concat([p5, p4, p3, p2], dim=1) | |
return fuse | |
class ASFBlock(nn.Module): | |
""" | |
This code is refered from: | |
https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py | |
""" | |
def __init__(self, in_channels, inter_channels, out_features_num=4): | |
""" | |
Adaptive Scale Fusion (ASF) block of DBNet++ | |
Args: | |
in_channels: the number of channels in the input data | |
inter_channels: the number of middle channels | |
out_features_num: the number of fused stages | |
""" | |
super(ASFBlock, self).__init__() | |
# weight_attr = paddle.nn.initializer.KaimingUniform() | |
self.in_channels = in_channels | |
self.inter_channels = inter_channels | |
self.out_features_num = out_features_num | |
self.conv = nn.Conv2d(in_channels, inter_channels, 3, padding=1) | |
self.spatial_scale = nn.Sequential( | |
# Nx1xHxW | |
nn.Conv2d( | |
in_channels=1, | |
out_channels=1, | |
kernel_size=3, | |
bias=False, | |
padding=1, | |
), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=1, | |
out_channels=1, | |
kernel_size=1, | |
bias=False, | |
), | |
nn.Sigmoid(), | |
) | |
self.channel_scale = nn.Sequential( | |
nn.Conv2d( | |
in_channels=inter_channels, | |
out_channels=out_features_num, | |
kernel_size=1, | |
bias=False, | |
), | |
nn.Sigmoid(), | |
) | |
def forward(self, fuse_features, features_list): | |
fuse_features = self.conv(fuse_features) | |
spatial_x = torch.mean(fuse_features, dim=1, keepdim=True) | |
attention_scores = self.spatial_scale(spatial_x) + fuse_features | |
attention_scores = self.channel_scale(attention_scores) | |
assert len(features_list) == self.out_features_num | |
out_list = [] | |
for i in range(self.out_features_num): | |
out_list.append(attention_scores[:, i:i + 1] * features_list[i]) | |
return torch.concat(out_list, dim=1) | |