OpenOCR-Demo / openrec /postprocess /visionlan_postprocess.py
topdu's picture
openocr demo
29f689c
import numpy as np
import torch
import torch.nn.functional as F
from .ctc_postprocess import BaseRecLabelDecode
class VisionLANLabelDecode(BaseRecLabelDecode):
"""Convert between text-label and text-index."""
def __init__(self,
character_dict_path=None,
use_space_char=False,
**kwargs):
super(VisionLANLabelDecode, self).__init__(character_dict_path,
use_space_char)
self.max_text_length = kwargs.get('max_text_length', 25)
self.nclass = len(self.character) + 1
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
"""convert text-index into text-label."""
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
if is_remove_duplicate:
selection[1:] = text_index[batch_idx][1:] != text_index[
batch_idx][:-1]
for ignored_token in ignored_tokens:
selection &= text_index[batch_idx] != ignored_token
char_list = [
self.character[text_id - 1]
for text_id in text_index[batch_idx][selection]
]
if text_prob is not None:
conf_list = text_prob[batch_idx][selection]
else:
conf_list = [1] * len(selection)
if len(conf_list) == 0:
conf_list = [0]
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list).tolist()))
return result_list
def __call__(self, preds, batch=None, *args, **kwargs):
if len(preds) == 2: # eval mode
net_out, length = preds
if batch is not None:
label = batch[1]
else: # train mode
net_out = preds[0]
label, length = batch[1], batch[5]
net_out = torch.cat([t[:l] for t, l in zip(net_out, length)],
dim=0)
text = []
if not isinstance(net_out, torch.Tensor):
net_out = torch.tensor(net_out, dtype=torch.float32)
net_out = F.softmax(net_out, dim=1)
for i in range(0, length.shape[0]):
preds_idx = (net_out[int(length[:i].sum()):int(length[:i].sum() +
length[i])].topk(1)
[1][:, 0].tolist())
preds_text = ''.join([
self.character[idx - 1]
if idx > 0 and idx <= len(self.character) else ''
for idx in preds_idx
])
preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum() +
length[i])].topk(
1)[0][:, 0]
preds_prob = torch.exp(
torch.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
text.append((preds_text, float(preds_prob)))
if batch is None:
return text
label = self.decode(label.detach().cpu().numpy())
return text, label