Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
from typing import TYPE_CHECKING, List | |
import logging | |
import json | |
import commentjson as cjson | |
import os | |
import sys | |
import requests | |
import urllib3 | |
import traceback | |
import pathlib | |
from tqdm import tqdm | |
import colorama | |
from duckduckgo_search import DDGS | |
from itertools import islice | |
import asyncio | |
import aiohttp | |
from enum import Enum | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.callbacks.manager import BaseCallbackManager | |
from typing import Any, Dict, List, Optional, Union | |
from langchain.callbacks.base import BaseCallbackHandler | |
from langchain.input import print_text | |
from langchain.schema import AgentAction, AgentFinish, LLMResult | |
from threading import Thread, Condition | |
from collections import deque | |
from ..presets import * | |
from ..index_func import * | |
from ..utils import * | |
from .. import shared | |
from ..config import retrieve_proxy | |
class CallbackToIterator: | |
def __init__(self): | |
self.queue = deque() | |
self.cond = Condition() | |
self.finished = False | |
def callback(self, result): | |
with self.cond: | |
self.queue.append(result) | |
self.cond.notify() # Wake up the generator. | |
def __iter__(self): | |
return self | |
def __next__(self): | |
with self.cond: | |
while not self.queue and not self.finished: # Wait for a value to be added to the queue. | |
self.cond.wait() | |
if not self.queue: | |
raise StopIteration() | |
return self.queue.popleft() | |
def finish(self): | |
with self.cond: | |
self.finished = True | |
self.cond.notify() # Wake up the generator if it's waiting. | |
def get_action_description(text): | |
match = re.search('```(.*?)```', text, re.S) | |
json_text = match.group(1) | |
# 把json转化为python字典 | |
json_dict = json.loads(json_text) | |
# 提取'action'和'action_input'的值 | |
action_name = json_dict['action'] | |
action_input = json_dict['action_input'] | |
if action_name != "Final Answer": | |
return f'<p style="font-size: smaller; color: gray;">{action_name}: {action_input}</p>' | |
else: | |
return "" | |
class ChuanhuCallbackHandler(BaseCallbackHandler): | |
def __init__(self, callback) -> None: | |
"""Initialize callback handler.""" | |
self.callback = callback | |
def on_agent_action( | |
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any | |
) -> Any: | |
self.callback(get_action_description(action.log)) | |
def on_tool_end( | |
self, | |
output: str, | |
color: Optional[str] = None, | |
observation_prefix: Optional[str] = None, | |
llm_prefix: Optional[str] = None, | |
**kwargs: Any, | |
) -> None: | |
"""If not the final action, print out observation.""" | |
# if observation_prefix is not None: | |
# self.callback(f"\n\n{observation_prefix}") | |
# self.callback(output) | |
# if llm_prefix is not None: | |
# self.callback(f"\n\n{llm_prefix}") | |
if observation_prefix is not None: | |
logging.info(observation_prefix) | |
self.callback(output) | |
if llm_prefix is not None: | |
logging.info(llm_prefix) | |
def on_agent_finish( | |
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any | |
) -> None: | |
# self.callback(f"{finish.log}\n\n") | |
logging.info(finish.log) | |
def on_llm_new_token(self, token: str, **kwargs: Any) -> None: | |
"""Run on new LLM token. Only available when streaming is enabled.""" | |
self.callback(token) | |
class ModelType(Enum): | |
Unknown = -1 | |
OpenAI = 0 | |
ChatGLM = 1 | |
LLaMA = 2 | |
XMChat = 3 | |
StableLM = 4 | |
MOSS = 5 | |
YuanAI = 6 | |
Minimax = 7 | |
ChuanhuAgent = 8 | |
def get_type(cls, model_name: str): | |
model_type = None | |
model_name_lower = model_name.lower() | |
if "gpt" in model_name_lower: | |
model_type = ModelType.OpenAI | |
elif "chatglm" in model_name_lower: | |
model_type = ModelType.ChatGLM | |
elif "llama" in model_name_lower or "alpaca" in model_name_lower: | |
model_type = ModelType.LLaMA | |
elif "xmchat" in model_name_lower: | |
model_type = ModelType.XMChat | |
elif "stablelm" in model_name_lower: | |
model_type = ModelType.StableLM | |
elif "moss" in model_name_lower: | |
model_type = ModelType.MOSS | |
elif "yuanai" in model_name_lower: | |
model_type = ModelType.YuanAI | |
elif "minimax" in model_name_lower: | |
model_type = ModelType.Minimax | |
elif "川虎助理" in model_name_lower: | |
model_type = ModelType.ChuanhuAgent | |
else: | |
model_type = ModelType.Unknown | |
return model_type | |
class BaseLLMModel: | |
def __init__( | |
self, | |
model_name, | |
system_prompt="", | |
temperature=1.0, | |
top_p=1.0, | |
n_choices=1, | |
stop=None, | |
max_generation_token=None, | |
presence_penalty=0, | |
frequency_penalty=0, | |
logit_bias=None, | |
user="", | |
) -> None: | |
self.history = [] | |
self.all_token_counts = [] | |
self.model_name = model_name | |
self.model_type = ModelType.get_type(model_name) | |
try: | |
self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name] | |
except KeyError: | |
self.token_upper_limit = DEFAULT_TOKEN_LIMIT | |
self.interrupted = False | |
self.system_prompt = system_prompt | |
self.api_key = None | |
self.need_api_key = False | |
self.single_turn = False | |
self.temperature = temperature | |
self.top_p = top_p | |
self.n_choices = n_choices | |
self.stop_sequence = stop | |
self.max_generation_token = None | |
self.presence_penalty = presence_penalty | |
self.frequency_penalty = frequency_penalty | |
self.logit_bias = logit_bias | |
self.user_identifier = user | |
def get_answer_stream_iter(self): | |
"""stream predict, need to be implemented | |
conversations are stored in self.history, with the most recent question, in OpenAI format | |
should return a generator, each time give the next word (str) in the answer | |
""" | |
logging.warning("stream predict not implemented, using at once predict instead") | |
response, _ = self.get_answer_at_once() | |
yield response | |
def get_answer_at_once(self): | |
"""predict at once, need to be implemented | |
conversations are stored in self.history, with the most recent question, in OpenAI format | |
Should return: | |
the answer (str) | |
total token count (int) | |
""" | |
logging.warning("at once predict not implemented, using stream predict instead") | |
response_iter = self.get_answer_stream_iter() | |
count = 0 | |
for response in response_iter: | |
count += 1 | |
return response, sum(self.all_token_counts) + count | |
def billing_info(self): | |
"""get billing infomation, inplement if needed""" | |
logging.warning("billing info not implemented, using default") | |
return BILLING_NOT_APPLICABLE_MSG | |
def count_token(self, user_input): | |
"""get token count from input, implement if needed""" | |
# logging.warning("token count not implemented, using default") | |
return len(user_input) | |
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""): | |
def get_return_value(): | |
return chatbot, status_text | |
status_text = i18n("开始实时传输回答……") | |
if fake_input: | |
chatbot.append((fake_input, "")) | |
else: | |
chatbot.append((inputs, "")) | |
user_token_count = self.count_token(inputs) | |
self.all_token_counts.append(user_token_count) | |
logging.debug(f"输入token计数: {user_token_count}") | |
stream_iter = self.get_answer_stream_iter() | |
if display_append: | |
display_append = "<hr>" +display_append | |
for partial_text in stream_iter: | |
chatbot[-1] = (chatbot[-1][0], partial_text + display_append) | |
self.all_token_counts[-1] += 1 | |
status_text = self.token_message() | |
yield get_return_value() | |
if self.interrupted: | |
self.recover() | |
break | |
self.history.append(construct_assistant(partial_text)) | |
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""): | |
if fake_input: | |
chatbot.append((fake_input, "")) | |
else: | |
chatbot.append((inputs, "")) | |
if fake_input is not None: | |
user_token_count = self.count_token(fake_input) | |
else: | |
user_token_count = self.count_token(inputs) | |
self.all_token_counts.append(user_token_count) | |
ai_reply, total_token_count = self.get_answer_at_once() | |
self.history.append(construct_assistant(ai_reply)) | |
if fake_input is not None: | |
self.history[-2] = construct_user(fake_input) | |
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append) | |
if fake_input is not None: | |
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply)) | |
else: | |
self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts) | |
status_text = self.token_message() | |
return chatbot, status_text | |
def handle_file_upload(self, files, chatbot, language): | |
"""if the model accepts multi modal input, implement this function""" | |
status = gr.Markdown.update() | |
if files: | |
index = construct_index(self.api_key, file_src=files) | |
status = i18n("索引构建完成") | |
return gr.Files.update(), chatbot, status | |
def summarize_index(self, files, chatbot, language): | |
status = gr.Markdown.update() | |
if files: | |
index = construct_index(self.api_key, file_src=files) | |
status = i18n("总结完成") | |
logging.info(i18n("生成内容总结中……")) | |
os.environ["OPENAI_API_KEY"] = self.api_key | |
from langchain.chains.summarize import load_summarize_chain | |
from langchain.prompts import PromptTemplate | |
from langchain.chat_models import ChatOpenAI | |
from langchain.callbacks import StdOutCallbackHandler | |
prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":" | |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"]) | |
llm = ChatOpenAI() | |
chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT) | |
summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"] | |
print(i18n("总结") + f": {summary}") | |
chatbot.append([i18n("上传了")+str(len(files))+"个文件", summary]) | |
return chatbot, status | |
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot): | |
fake_inputs = None | |
display_append = [] | |
limited_context = False | |
fake_inputs = real_inputs | |
if files: | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.vectorstores.base import VectorStoreRetriever | |
limited_context = True | |
msg = "加载索引中……" | |
logging.info(msg) | |
index = construct_index(self.api_key, file_src=files) | |
assert index is not None, "获取索引失败" | |
msg = "索引获取成功,生成回答中……" | |
logging.info(msg) | |
with retrieve_proxy(): | |
retriever = VectorStoreRetriever(vectorstore=index, search_type="similarity_score_threshold",search_kwargs={"k":6, "score_threshold": 0.5}) | |
relevant_documents = retriever.get_relevant_documents(real_inputs) | |
reference_results = [[d.page_content.strip("�"), os.path.basename(d.metadata["source"])] for d in relevant_documents] | |
reference_results = add_source_numbers(reference_results) | |
display_append = add_details(reference_results) | |
display_append = "\n\n" + "".join(display_append) | |
real_inputs = ( | |
replace_today(PROMPT_TEMPLATE) | |
.replace("{query_str}", real_inputs) | |
.replace("{context_str}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language) | |
) | |
elif use_websearch: | |
search_results = [] | |
with DDGS() as ddgs: | |
ddgs_gen = ddgs.text(real_inputs, backend="lite") | |
for r in islice(ddgs_gen, 10): | |
search_results.append(r) | |
reference_results = [] | |
for idx, result in enumerate(search_results): | |
logging.debug(f"搜索结果{idx + 1}:{result}") | |
domain_name = urllib3.util.parse_url(result['href']).host | |
reference_results.append([result['body'], result['href']]) | |
display_append.append( | |
# f"{idx+1}. [{domain_name}]({result['href']})\n" | |
f"<li><a href=\"{result['href']}\" target=\"_blank\">{result['title']}</a></li>\n" | |
) | |
reference_results = add_source_numbers(reference_results) | |
display_append = "<ol>\n\n" + "".join(display_append) + "</ol>" | |
real_inputs = ( | |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) | |
.replace("{query}", real_inputs) | |
.replace("{web_results}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language) | |
) | |
else: | |
display_append = "" | |
return limited_context, fake_inputs, display_append, real_inputs, chatbot | |
def predict( | |
self, | |
inputs, | |
chatbot, | |
stream=False, | |
use_websearch=False, | |
files=None, | |
reply_language="中文", | |
should_check_token_count=True, | |
): # repetition_penalty, top_k | |
status_text = "开始生成回答……" | |
logging.info( | |
"输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL | |
) | |
if should_check_token_count: | |
yield chatbot + [(inputs, "")], status_text | |
if reply_language == "跟随问题语言(不稳定)": | |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." | |
limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot) | |
yield chatbot + [(fake_inputs, "")], status_text | |
if ( | |
self.need_api_key and | |
self.api_key is None | |
and not shared.state.multi_api_key | |
): | |
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG | |
logging.info(status_text) | |
chatbot.append((inputs, "")) | |
if len(self.history) == 0: | |
self.history.append(construct_user(inputs)) | |
self.history.append("") | |
self.all_token_counts.append(0) | |
else: | |
self.history[-2] = construct_user(inputs) | |
yield chatbot + [(inputs, "")], status_text | |
return | |
elif len(inputs.strip()) == 0: | |
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG | |
logging.info(status_text) | |
yield chatbot + [(inputs, "")], status_text | |
return | |
if self.single_turn: | |
self.history = [] | |
self.all_token_counts = [] | |
self.history.append(construct_user(inputs)) | |
try: | |
if stream: | |
logging.debug("使用流式传输") | |
iter = self.stream_next_chatbot( | |
inputs, | |
chatbot, | |
fake_input=fake_inputs, | |
display_append=display_append, | |
) | |
for chatbot, status_text in iter: | |
yield chatbot, status_text | |
else: | |
logging.debug("不使用流式传输") | |
chatbot, status_text = self.next_chatbot_at_once( | |
inputs, | |
chatbot, | |
fake_input=fake_inputs, | |
display_append=display_append, | |
) | |
yield chatbot, status_text | |
except Exception as e: | |
traceback.print_exc() | |
status_text = STANDARD_ERROR_MSG + str(e) | |
yield chatbot, status_text | |
if len(self.history) > 1 and self.history[-1]["content"] != inputs: | |
logging.info( | |
"回答为:" | |
+ colorama.Fore.BLUE | |
+ f"{self.history[-1]['content']}" | |
+ colorama.Style.RESET_ALL | |
) | |
if limited_context: | |
# self.history = self.history[-4:] | |
# self.all_token_counts = self.all_token_counts[-2:] | |
self.history = [] | |
self.all_token_counts = [] | |
max_token = self.token_upper_limit - TOKEN_OFFSET | |
if sum(self.all_token_counts) > max_token and should_check_token_count: | |
count = 0 | |
while ( | |
sum(self.all_token_counts) | |
> self.token_upper_limit * REDUCE_TOKEN_FACTOR | |
and sum(self.all_token_counts) > 0 | |
): | |
count += 1 | |
del self.all_token_counts[0] | |
del self.history[:2] | |
logging.info(status_text) | |
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" | |
yield chatbot, status_text | |
self.auto_save(chatbot) | |
def retry( | |
self, | |
chatbot, | |
stream=False, | |
use_websearch=False, | |
files=None, | |
reply_language="中文", | |
): | |
logging.debug("重试中……") | |
if len(self.history) > 0: | |
inputs = self.history[-2]["content"] | |
del self.history[-2:] | |
self.all_token_counts.pop() | |
elif len(chatbot) > 0: | |
inputs = chatbot[-1][0] | |
else: | |
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的" | |
return | |
iter = self.predict( | |
inputs, | |
chatbot, | |
stream=stream, | |
use_websearch=use_websearch, | |
files=files, | |
reply_language=reply_language, | |
) | |
for x in iter: | |
yield x | |
logging.debug("重试完毕") | |
# def reduce_token_size(self, chatbot): | |
# logging.info("开始减少token数量……") | |
# chatbot, status_text = self.next_chatbot_at_once( | |
# summarize_prompt, | |
# chatbot | |
# ) | |
# max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR | |
# num_chat = find_n(self.all_token_counts, max_token_count) | |
# logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats") | |
# chatbot = chatbot[:-1] | |
# self.history = self.history[-2*num_chat:] if num_chat > 0 else [] | |
# self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else [] | |
# msg = f"保留了最近{num_chat}轮对话" | |
# logging.info(msg) | |
# logging.info("减少token数量完毕") | |
# return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0]) | |
def interrupt(self): | |
self.interrupted = True | |
def recover(self): | |
self.interrupted = False | |
def set_token_upper_limit(self, new_upper_limit): | |
self.token_upper_limit = new_upper_limit | |
print(f"token上限设置为{new_upper_limit}") | |
def set_temperature(self, new_temperature): | |
self.temperature = new_temperature | |
def set_top_p(self, new_top_p): | |
self.top_p = new_top_p | |
def set_n_choices(self, new_n_choices): | |
self.n_choices = new_n_choices | |
def set_stop_sequence(self, new_stop_sequence: str): | |
new_stop_sequence = new_stop_sequence.split(",") | |
self.stop_sequence = new_stop_sequence | |
def set_max_tokens(self, new_max_tokens): | |
self.max_generation_token = new_max_tokens | |
def set_presence_penalty(self, new_presence_penalty): | |
self.presence_penalty = new_presence_penalty | |
def set_frequency_penalty(self, new_frequency_penalty): | |
self.frequency_penalty = new_frequency_penalty | |
def set_logit_bias(self, logit_bias): | |
logit_bias = logit_bias.split() | |
bias_map = {} | |
encoding = tiktoken.get_encoding("cl100k_base") | |
for line in logit_bias: | |
word, bias_amount = line.split(":") | |
if word: | |
for token in encoding.encode(word): | |
bias_map[token] = float(bias_amount) | |
self.logit_bias = bias_map | |
def set_user_identifier(self, new_user_identifier): | |
self.user_identifier = new_user_identifier | |
def set_system_prompt(self, new_system_prompt): | |
self.system_prompt = new_system_prompt | |
def set_key(self, new_access_key): | |
self.api_key = new_access_key.strip() | |
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key) | |
logging.info(msg) | |
return self.api_key, msg | |
def set_single_turn(self, new_single_turn): | |
self.single_turn = new_single_turn | |
def reset(self): | |
self.history = [] | |
self.all_token_counts = [] | |
self.interrupted = False | |
pathlib.Path(os.path.join(HISTORY_DIR, self.user_identifier, new_auto_history_filename(os.path.join(HISTORY_DIR, self.user_identifier)))).touch() | |
return [], self.token_message([0]) | |
def delete_first_conversation(self): | |
if self.history: | |
del self.history[:2] | |
del self.all_token_counts[0] | |
return self.token_message() | |
def delete_last_conversation(self, chatbot): | |
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]: | |
msg = "由于包含报错信息,只删除chatbot记录" | |
chatbot.pop() | |
return chatbot, self.history | |
if len(self.history) > 0: | |
self.history.pop() | |
self.history.pop() | |
if len(chatbot) > 0: | |
msg = "删除了一组chatbot对话" | |
chatbot.pop() | |
if len(self.all_token_counts) > 0: | |
msg = "删除了一组对话的token计数记录" | |
self.all_token_counts.pop() | |
msg = "删除了一组对话" | |
return chatbot, msg | |
def token_message(self, token_lst=None): | |
if token_lst is None: | |
token_lst = self.all_token_counts | |
token_sum = 0 | |
for i in range(len(token_lst)): | |
token_sum += sum(token_lst[: i + 1]) | |
return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens" | |
def save_chat_history(self, filename, chatbot, user_name): | |
if filename == "": | |
return | |
if not filename.endswith(".json"): | |
filename += ".json" | |
return save_file(filename, self.system_prompt, self.history, chatbot, user_name) | |
def auto_save(self, chatbot): | |
history_file_path = get_history_filepath(self.user_identifier) | |
save_file(history_file_path, self.system_prompt, self.history, chatbot, self.user_identifier) | |
def export_markdown(self, filename, chatbot, user_name): | |
if filename == "": | |
return | |
if not filename.endswith(".md"): | |
filename += ".md" | |
return save_file(filename, self.system_prompt, self.history, chatbot, user_name) | |
def load_chat_history(self, filename, user_name): | |
logging.debug(f"{user_name} 加载对话历史中……") | |
logging.info(f"filename: {filename}") | |
if type(filename) != str and filename is not None: | |
filename = filename.name | |
try: | |
if "/" not in filename: | |
history_file_path = os.path.join(HISTORY_DIR, user_name, filename) | |
else: | |
history_file_path = filename | |
with open(history_file_path, "r", encoding="utf-8") as f: | |
json_s = json.load(f) | |
try: | |
if type(json_s["history"][0]) == str: | |
logging.info("历史记录格式为旧版,正在转换……") | |
new_history = [] | |
for index, item in enumerate(json_s["history"]): | |
if index % 2 == 0: | |
new_history.append(construct_user(item)) | |
else: | |
new_history.append(construct_assistant(item)) | |
json_s["history"] = new_history | |
logging.info(new_history) | |
except: | |
pass | |
logging.debug(f"{user_name} 加载对话历史完毕") | |
self.history = json_s["history"] | |
return os.path.basename(filename), json_s["system"], json_s["chatbot"] | |
except: | |
# 没有对话历史或者对话历史解析失败 | |
logging.info(f"没有找到对话历史记录 {filename}") | |
return gr.update(), self.system_prompt, gr.update() | |
def auto_load(self): | |
if self.user_identifier == "": | |
self.reset() | |
return self.system_prompt, gr.update() | |
history_file_path = get_history_filepath(self.user_identifier) | |
filename, system_prompt, chatbot = self.load_chat_history(history_file_path, self.user_identifier) | |
return system_prompt, chatbot | |
def like(self): | |
"""like the last response, implement if needed | |
""" | |
return gr.update() | |
def dislike(self): | |
"""dislike the last response, implement if needed | |
""" | |
return gr.update() | |