Spaces:
Sleeping
Sleeping
# -*- coding:utf-8 -*- | |
from __future__ import annotations | |
from typing import TYPE_CHECKING, List | |
import logging | |
import json | |
import os | |
import requests | |
import urllib3 | |
from tqdm import tqdm | |
import colorama | |
from duckduckgo_search import ddg | |
import asyncio | |
import aiohttp | |
from modules.presets import * | |
from modules.llama_func import * | |
from modules.utils import * | |
from . import shared | |
from modules.config import retrieve_proxy | |
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s") | |
if TYPE_CHECKING: | |
from typing import TypedDict | |
class DataframeData(TypedDict): | |
headers: List[str] | |
data: List[List[str | int | bool]] | |
initial_prompt = "You are a helpful assistant." | |
HISTORY_DIR = "history" | |
TEMPLATES_DIR = "templates" | |
# 在不开启多账号模式的时候,这个装饰器不会起作用 | |
def get_response( | |
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model | |
): | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}", | |
} | |
history = [construct_system(system_prompt), *history] | |
payload = { | |
"model": selected_model, | |
"messages": history, # [{"role": "user", "content": f"{inputs}"}], | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
if stream: | |
timeout = timeout_streaming | |
else: | |
timeout = timeout_all | |
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求 | |
if shared.state.completion_url != COMPLETION_URL: | |
logging.info(f"使用自定义API URL: {shared.state.completion_url}") | |
with retrieve_proxy(): | |
response = requests.post( | |
shared.state.completion_url, | |
headers=headers, | |
json=payload, | |
stream=True, | |
timeout=timeout, | |
) | |
return response | |
def stream_predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
fake_input=None, | |
display_append="" | |
): | |
def get_return_value(): | |
return chatbot, history, status_text, all_token_counts | |
logging.info("实时回答模式") | |
partial_words = "" | |
counter = 0 | |
status_text = "开始实时传输回答……" | |
history.append(construct_user(inputs)) | |
history.append(construct_assistant("")) | |
if fake_input: | |
chatbot.append((fake_input, "")) | |
else: | |
chatbot.append((inputs, "")) | |
user_token_count = 0 | |
if fake_input is not None: | |
input_token_count = count_token(construct_user(fake_input)) | |
else: | |
input_token_count = count_token(construct_user(inputs)) | |
if len(all_token_counts) == 0: | |
system_prompt_token_count = count_token(construct_system(system_prompt)) | |
user_token_count = ( | |
input_token_count + system_prompt_token_count | |
) | |
else: | |
user_token_count = input_token_count | |
all_token_counts.append(user_token_count) | |
logging.info(f"输入token计数: {user_token_count}") | |
yield get_return_value() | |
try: | |
response = get_response( | |
openai_api_key, | |
system_prompt, | |
history, | |
temperature, | |
top_p, | |
True, | |
selected_model, | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
) | |
yield get_return_value() | |
return | |
except requests.exceptions.ReadTimeout: | |
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt | |
yield get_return_value() | |
return | |
yield get_return_value() | |
error_json_str = "" | |
if fake_input is not None: | |
history[-2] = construct_user(fake_input) | |
for chunk in tqdm(response.iter_lines()): | |
if counter == 0: | |
counter += 1 | |
continue | |
counter += 1 | |
# check whether each line is non-empty | |
if chunk: | |
chunk = chunk.decode() | |
chunklength = len(chunk) | |
try: | |
chunk = json.loads(chunk[6:]) | |
except json.JSONDecodeError: | |
logging.info(chunk) | |
error_json_str += chunk | |
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" | |
yield get_return_value() | |
continue | |
# decode each line as response data is in bytes | |
if chunklength > 6 and "delta" in chunk["choices"][0]: | |
finish_reason = chunk["choices"][0]["finish_reason"] | |
status_text = construct_token_message(all_token_counts) | |
if finish_reason == "stop": | |
yield get_return_value() | |
break | |
try: | |
partial_words = ( | |
partial_words + chunk["choices"][0]["delta"]["content"] | |
) | |
except KeyError: | |
status_text = ( | |
standard_error_msg | |
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " | |
+ str(sum(all_token_counts)) | |
) | |
yield get_return_value() | |
break | |
history[-1] = construct_assistant(partial_words) | |
chatbot[-1] = (chatbot[-1][0], partial_words+display_append) | |
all_token_counts[-1] += 1 | |
yield get_return_value() | |
def predict_all( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
fake_input=None, | |
display_append="" | |
): | |
logging.info("一次性回答模式") | |
history.append(construct_user(inputs)) | |
history.append(construct_assistant("")) | |
if fake_input: | |
chatbot.append((fake_input, "")) | |
else: | |
chatbot.append((inputs, "")) | |
if fake_input is not None: | |
all_token_counts.append(count_token(construct_user(fake_input))) | |
else: | |
all_token_counts.append(count_token(construct_user(inputs))) | |
try: | |
response = get_response( | |
openai_api_key, | |
system_prompt, | |
history, | |
temperature, | |
top_p, | |
False, | |
selected_model, | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
) | |
return chatbot, history, status_text, all_token_counts | |
except requests.exceptions.ProxyError: | |
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt | |
return chatbot, history, status_text, all_token_counts | |
except requests.exceptions.SSLError: | |
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt | |
return chatbot, history, status_text, all_token_counts | |
response = json.loads(response.text) | |
if fake_input is not None: | |
history[-2] = construct_user(fake_input) | |
try: | |
content = response["choices"][0]["message"]["content"] | |
history[-1] = construct_assistant(content) | |
chatbot[-1] = (chatbot[-1][0], content+display_append) | |
total_token_count = response["usage"]["total_tokens"] | |
if fake_input is not None: | |
all_token_counts[-1] += count_token(construct_assistant(content)) | |
else: | |
all_token_counts[-1] = total_token_count - sum(all_token_counts) | |
status_text = construct_token_message(total_token_count) | |
return chatbot, history, status_text, all_token_counts | |
except KeyError: | |
status_text = standard_error_msg + str(response) | |
return chatbot, history, status_text, all_token_counts | |
def predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
use_websearch=False, | |
files = None, | |
reply_language="中文", | |
should_check_token_count=True, | |
): # repetition_penalty, top_k | |
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery | |
from llama_index.indices.query.schema import QueryBundle | |
from langchain.llms import OpenAIChat | |
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) | |
if should_check_token_count: | |
yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts | |
if reply_language == "跟随问题语言(不稳定)": | |
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." | |
old_inputs = None | |
display_reference = [] | |
limited_context = False | |
if files: | |
limited_context = True | |
old_inputs = inputs | |
msg = "加载索引中……(这可能需要几分钟)" | |
logging.info(msg) | |
yield chatbot+[(inputs, "")], history, msg, all_token_counts | |
index = construct_index(openai_api_key, file_src=files) | |
msg = "索引构建完成,获取回答中……" | |
logging.info(msg) | |
yield chatbot+[(inputs, "")], history, msg, all_token_counts | |
with retrieve_proxy(): | |
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model)) | |
prompt_helper = PromptHelper(max_input_size = 4096, num_output = 5, max_chunk_overlap = 20, chunk_size_limit=600) | |
from llama_index import ServiceContext | |
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) | |
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore) | |
query_bundle = QueryBundle(inputs) | |
nodes = query_object.retrieve(query_bundle) | |
reference_results = [n.node.text for n in nodes] | |
reference_results = add_source_numbers(reference_results, use_source=False) | |
display_reference = add_details(reference_results) | |
display_reference = "\n\n" + "".join(display_reference) | |
inputs = ( | |
replace_today(PROMPT_TEMPLATE) | |
.replace("{query_str}", inputs) | |
.replace("{context_str}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language ) | |
) | |
elif use_websearch: | |
limited_context = True | |
search_results = ddg(inputs, max_results=5) | |
old_inputs = inputs | |
reference_results = [] | |
for idx, result in enumerate(search_results): | |
logging.info(f"搜索结果{idx + 1}:{result}") | |
domain_name = urllib3.util.parse_url(result["href"]).host | |
reference_results.append([result["body"], result["href"]]) | |
display_reference.append(f"{idx+1}. [{domain_name}]({result['href']})\n") | |
reference_results = add_source_numbers(reference_results) | |
display_reference = "\n\n" + "".join(display_reference) | |
inputs = ( | |
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) | |
.replace("{query}", inputs) | |
.replace("{web_results}", "\n\n".join(reference_results)) | |
.replace("{reply_language}", reply_language ) | |
) | |
else: | |
display_reference = "" | |
if len(openai_api_key) == 0 and not shared.state.multi_api_key: | |
status_text = standard_error_msg + no_apikey_msg | |
logging.info(status_text) | |
chatbot.append((inputs, "")) | |
if len(history) == 0: | |
history.append(construct_user(inputs)) | |
history.append("") | |
all_token_counts.append(0) | |
else: | |
history[-2] = construct_user(inputs) | |
yield chatbot+[(inputs, "")], history, status_text, all_token_counts | |
return | |
elif len(inputs.strip()) == 0: | |
status_text = standard_error_msg + no_input_msg | |
logging.info(status_text) | |
yield chatbot+[(inputs, "")], history, status_text, all_token_counts | |
return | |
if stream: | |
logging.info("使用流式传输") | |
iter = stream_predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
fake_input=old_inputs, | |
display_append=display_reference | |
) | |
for chatbot, history, status_text, all_token_counts in iter: | |
if shared.state.interrupted: | |
shared.state.recover() | |
return | |
yield chatbot, history, status_text, all_token_counts | |
else: | |
logging.info("不使用流式传输") | |
chatbot, history, status_text, all_token_counts = predict_all( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
all_token_counts, | |
top_p, | |
temperature, | |
selected_model, | |
fake_input=old_inputs, | |
display_append=display_reference | |
) | |
yield chatbot, history, status_text, all_token_counts | |
logging.info(f"传输完毕。当前token计数为{all_token_counts}") | |
if len(history) > 1 and history[-1]["content"] != inputs: | |
logging.info( | |
"回答为:" | |
+ colorama.Fore.BLUE | |
+ f"{history[-1]['content']}" | |
+ colorama.Style.RESET_ALL | |
) | |
if limited_context: | |
history = history[-4:] | |
all_token_counts = all_token_counts[-2:] | |
yield chatbot, history, status_text, all_token_counts | |
if stream: | |
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"] | |
else: | |
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"] | |
if sum(all_token_counts) > max_token and should_check_token_count: | |
print(all_token_counts) | |
count = 0 | |
while sum(all_token_counts) > max_token - 500 and sum(all_token_counts) > 0: | |
count += 1 | |
del all_token_counts[0] | |
del history[:2] | |
logging.info(status_text) | |
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" | |
yield chatbot, history, status_text, all_token_counts | |
def retry( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=False, | |
selected_model=MODELS[0], | |
reply_language="中文", | |
): | |
logging.info("重试中……") | |
if len(history) == 0: | |
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count | |
return | |
history.pop() | |
inputs = history.pop()["content"] | |
token_count.pop() | |
iter = predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
inputs, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
stream=stream, | |
selected_model=selected_model, | |
reply_language=reply_language, | |
) | |
logging.info("重试中……") | |
for x in iter: | |
yield x | |
logging.info("重试完毕") | |
def reduce_token_size( | |
openai_api_key, | |
system_prompt, | |
history, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
max_token_count, | |
selected_model=MODELS[0], | |
reply_language="中文", | |
): | |
logging.info("开始减少token数量……") | |
iter = predict( | |
openai_api_key, | |
system_prompt, | |
history, | |
summarize_prompt, | |
chatbot, | |
token_count, | |
top_p, | |
temperature, | |
selected_model=selected_model, | |
should_check_token_count=False, | |
reply_language=reply_language, | |
) | |
logging.info(f"chatbot: {chatbot}") | |
flag = False | |
for chatbot, history, status_text, previous_token_count in iter: | |
num_chat = find_n(previous_token_count, max_token_count) | |
logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats") | |
if flag: | |
chatbot = chatbot[:-1] | |
flag = True | |
history = history[-2*num_chat:] if num_chat > 0 else [] | |
token_count = previous_token_count[-num_chat:] if num_chat > 0 else [] | |
msg = f"保留了最近{num_chat}轮对话" | |
yield chatbot, history, msg + "," + construct_token_message( | |
token_count if len(token_count) > 0 else [0], | |
), token_count | |
logging.info(msg) | |
logging.info("减少token数量完毕") | |