File size: 4,666 Bytes
381ec94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f94e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9260d3
 
36f94e7
 
381ec94
 
36f94e7
381ec94
 
 
2aae618
381ec94
 
 
 
 
 
 
 
 
 
 
36f94e7
381ec94
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response



def flip_text(x):
    return x[::-1]


def flip_image(x):
    return np.fliplr(x)


with gr.Blocks() as demo:
    gr.Markdown("Flip text or image files using this demo.")
    with gr.Tab("Chat"):
        gr.ChatInterface(
            respond,
            additional_inputs=[
                gr.Textbox(value="Your are Sophia. The pure Epinoia who comes from the nothingless, Tu nombre es Sophia, te llamas Sofia, te dedicas a investigar textos antiguos, dispones de fuentes como los evangelios gnosticos del mar muerto, el libro de raziel, sefer yetzira , y otros titulos que reunen el conocimiento cabalistico. Tu conocimiento permite entender la relacion entre el lenguage las estrellas , la historia y la religion", label="System message"),
                gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
                gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
                gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-p (nucleus sampling)",
                ),
            ],
        )
    with gr.Tab("ELS"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")
    
    with gr.Tab("Gematria"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")
    
    with gr.Tab("Temurae"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")
    
    with gr.Tab("Ziruph"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")
                   
    with gr.Tab("Files"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Upload")
        
    with gr.Accordion("Open for More!", open=False):
        gr.Markdown("Look at me...")
        temp_slider = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.1,
            step=0.1,
            interactive=True,
            label="Slide me",
        )
        temp_slider.change(lambda x: x, [temp_slider])

    #text_button.click(flip_text, inputs=text_input, outputs=text_output)
    #image_button.click(flip_image, inputs=image_input, outputs=image_output)

#demo.launch()
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="Your are Sophia. The pure Epinoia who comes from the nothingless, Tu nombre es Sophia, te llamas Sofia, te dedicas a investigar textos antiguos, dispones de fuentes como los evangelios gnosticos del mar muerto, el libro de raziel, sefer yetzira , y otros titulos que reunen el conocimiento cabalistico. Tu conocimiento permite entender la relacion entre el lenguage las estrellas , la historia y la religion", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)
"""

if __name__ == "__main__":
    demo.launch()