cryptocalypse commited on
Commit
8b82e6e
·
1 Parent(s): 0343ea2

clases refactor draft, I class

Browse files
app.py CHANGED
@@ -9,6 +9,9 @@ from lib.ziruph import encrypt,decrypt
9
  from lib.entropy import *
10
  from torahcodes.resources.func.torah import *
11
  from lib.sonsofstars import *
 
 
 
12
 
13
  ## UTILS
14
  import math
 
9
  from lib.entropy import *
10
  from torahcodes.resources.func.torah import *
11
  from lib.sonsofstars import *
12
+ #from lib.memory import *
13
+ #from lib.pipes import *
14
+
15
 
16
  ## UTILS
17
  import math
lattice.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+
4
+ def draw_hexagonal_grid(rows, cols, text):
5
+ fig, ax = plt.subplots()
6
+ ax.set_aspect('equal')
7
+
8
+ # Create a hexagonal lattice
9
+ for i in range(rows):
10
+ for j in range(cols):
11
+ if i % 2 == 0:
12
+ y = i * np.sqrt(3) / 2
13
+ x = j * 3 / 2
14
+ else:
15
+ y = (i + 0.5) * np.sqrt(3) / 2
16
+ x = (j + 0.5) * 3 / 2
17
+ ax.add_patch(plt.RegularPolygon((x, y), numVertices=6, radius=0.5, orientation=np.pi/6, fill=None))
18
+
19
+ # Add text inside each cell
20
+ ax.text(x, y, text[i * cols + j], ha='center', va='center')
21
+
22
+ ax.autoscale_view()
23
+ ax.axis('off')
24
+ plt.show()
25
+
26
+ # Example usage
27
+ text = "HELLO"
28
+ rows = 5
29
+ cols = 5
30
+ draw_hexagonal_grid(rows, cols, text)
lib/__pycache__/gematria.cpython-39.pyc DELETED
Binary file (7.07 kB)
 
lib/__pycache__/torah.cpython-39.pyc DELETED
Binary file (8.29 kB)
 
lib/events.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import matplotlib.pyplot as plt
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.ensemble import RandomForestRegressor
5
+ from sklearn.metrics import mean_squared_error
6
+ from scipy.stats import pearsonr
7
+ import numpy as np
8
+ from scipy.fft import fft
9
+
10
+
11
+ class EventManager:
12
+ def __init__(self):
13
+ self.events = []
14
+
15
+ def add_event(self, event_title, time_dataset, probability_fork, quantity, common_tag_event_dataset,
16
+ quantity_correlation_dataset, event_max_quantity, event_min_quantity, event_middle_quantity,
17
+ sentiment_direction):
18
+ event = {
19
+ "event_title": event_title,
20
+ "time_dataset": time_dataset,
21
+ "probability_fork": probability_fork,
22
+ "quantity": quantity,
23
+ "common_tag_event_dataset": common_tag_event_dataset,
24
+ "quantity_correlation_dataset": quantity_correlation_dataset,
25
+ "event_max_quantity": event_max_quantity,
26
+ "event_min_quantity": event_min_quantity,
27
+ "event_middle_quantity": event_middle_quantity,
28
+ "sentiment_direction": sentiment_direction
29
+ }
30
+ self.events.append(event)
31
+
32
+ def remove_event(self, event_title):
33
+ self.events = [event for event in self.events if event['event_title'] != event_title]
34
+
35
+ def get_events_by_tag(self, tag):
36
+ return [event for event in self.events if tag in event['common_tag_event_dataset']]
37
+
38
+ def get_events_by_sentiment(self, sentiment):
39
+ return [event for event in self.events if event['sentiment_direction'] == sentiment]
40
+
41
+ def get_events_by_quantity_range(self, min_quantity, max_quantity):
42
+ return [event for event in self.events if min_quantity <= event['quantity'] <= max_quantity]
43
+
44
+ def predict_time_series(self, event_title):
45
+ event = next((event for event in self.events if event['event_title'] == event_title), None)
46
+ if event:
47
+ time_series = event['time_dataset']
48
+ # Aquí puedes implementar tu modelo de predicción de series temporales
49
+ # Por ejemplo, utilizando un modelo de regresión como RandomForestRegressor de scikit-learn
50
+ X = np.arange(len(time_series)).reshape(-1, 1)
51
+ y = np.array(time_series)
52
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
53
+ model = RandomForestRegressor()
54
+ model.fit(X_train, y_train)
55
+ predictions = model.predict(X_test)
56
+ return predictions
57
+ else:
58
+ return None
59
+
60
+ def plot_event_parameters_over_time(self, event_title):
61
+ event = next((event for event in self.events if event['event_title'] == event_title), None)
62
+ if event:
63
+ time_series = event['time_dataset']
64
+ plt.plot(time_series)
65
+ plt.xlabel('Tiempo')
66
+ plt.ylabel('Valor')
67
+ plt.title('Parámetros del Evento "{}" a lo largo del tiempo'.format(event_title))
68
+ plt.show()
69
+
70
+ def plot_prediction(self, event_title):
71
+ predictions = self.predict_time_series(event_title)
72
+ if predictions:
73
+ plt.plot(predictions, label='Predicción')
74
+ plt.xlabel('Tiempo')
75
+ plt.ylabel('Valor')
76
+ plt.title('Predicción del Evento "{}"'.format(event_title))
77
+ plt.legend()
78
+ plt.show()
79
+
80
+ def check_correlation(self, event_title1, event_title2):
81
+ event1 = next((event for event in self.events if event['event_title'] == event_title1), None)
82
+ event2 = next((event for event in self.events if event['event_title'] == event_title2), None)
83
+ if event1 and event2:
84
+ correlation, _ = pearsonr(event1['quantity_correlation_dataset'], event2['quantity_correlation_dataset'])
85
+ return correlation
86
+ else:
87
+ return None
88
+
89
+ def fourier_transform(self, event_title):
90
+ event = next((event for event in self.events if event['event_title'] == event_title), None)
91
+ if event:
92
+ time_series = event['time_dataset']
93
+ transformed_data = fft(time_series)
94
+ return transformed_data
95
+ else:
96
+ return None
97
+
98
+
99
+ # Ejemplo de uso
100
+ event_manager = EventManager()
101
+
102
+ # Añadir eventos
103
+ event_manager.add_event("Evento 1", [1, 2, 3, 4, 5], 0.8, 100, ["tag1", "tag2"], [0.1, 0.2, 0.3, 0.4, 0.5],
104
+ 150, 50, 100, "good when up")
105
+ event_manager.add_event("Evento 2", [2, 4, 6, 8, 10], 0.6, 200, ["tag2", "tag3"], [0.2, 0.4, 0.6, 0.8, 1.0],
106
+ 250, 150, 200, "bad when down")
107
+
108
+ # Realizar predicción de series temporales y plot
109
+ event_manager.plot_event_parameters_over_time("Evento 1")
110
+ event_manager.plot_prediction("Evento 1")
111
+
112
+ # Comprobar correlación entre dos eventos
113
+ correlation = event_manager.check_correlation("Evento 1", "Evento 2")
114
+ if correlation:
115
+ print("Correlación entre Evento 1 y Evento 2:", correlation)
116
+ else:
117
+ print("Alguno de los eventos no existe.")
118
+
119
+ # Transformada de Fourier
120
+ transformed_data = event_manager.fourier_transform("Evento 1")
121
+ print("Transformada de Fourier del Evento 1:", transformed_data)
122
+
lib/{grepher.py → grapher.py} RENAMED
File without changes
lib/latticegrid.py CHANGED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ from matplotlib.patches import RegularPolygon
4
+
5
+
6
+ ## set texto over lattice grid
7
+ def hex_lattice(text, size=1, figsize=(8, 8)):
8
+ fig, ax = plt.subplots(figsize=figsize)
9
+ ax.set_aspect('equal')
10
+ ax.axis('off')
11
+
12
+ # Define hexagonal lattice parameters
13
+ radius = size * np.sqrt(3) / 2
14
+ x_offset = size * 1.5
15
+ y_offset = size * np.sqrt(3)
16
+
17
+ # Function to plot hexagon
18
+ def hexagon(x, y, color='white'):
19
+ hexagon = RegularPolygon((x, y), numVertices=6, radius=radius, orientation=np.pi/2, facecolor=color, edgecolor='black')
20
+ ax.add_patch(hexagon)
21
+
22
+ # Generate lattice grid
23
+ rows = len(text)
24
+ cols = max(len(row) for row in text)
25
+ for r in range(rows):
26
+ for c in range(cols):
27
+ x = c * x_offset
28
+ y = r * y_offset
29
+ if r % 2 == 1:
30
+ x += x_offset / 2
31
+ if r < len(text) and c < len(text[r]):
32
+ hexagon(x, y, color='lightblue')
33
+ ax.text(x, y, text[r][c], ha='center', va='center', fontsize=12)
34
+
35
+ plt.show()
36
+
37
+
38
+ if __name__ == "__main__":
39
+
40
+ # Example usage:
41
+ text_to_display = [
42
+ ['A', 'B', 'C', 'D'],
43
+ ['E', 'F', 'G'],
44
+ ['H', 'I', 'J', 'K', 'L']
45
+ ]
46
+
47
+ hex_lattice(text_to_display, size=1, figsize=(10, 8))
lib/me.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lib.memory import *
2
+ from lib.grapher import *
3
+ from lib.pipes import *
4
+ from lib.entropy import *
5
+
6
+ class I:
7
+ def __init__(self, frases_yo, preferencias, propiedades_persona):
8
+ self.frases_yo = frases_yo
9
+ self.preferencias = preferencias
10
+ self.propiedades_persona = propiedades_persona
11
+ self.dopamina = 0.0
12
+
13
+ self.frases_yo = frases_yo
14
+ self.preferencias = preferencias
15
+ self.propiedades_persona = propiedades_persona
16
+ self.dopamina = 0.0
17
+
18
+ def obtener_paths_grafo(self, grafo_ngx):
19
+ # Función para obtener los paths de un grafo ngx
20
+
21
+
22
+ pass
23
+
24
+ def crear_circuito_logico(self):
25
+ # Función para crear un circuito lógico con un algoritmo específico
26
+ pass
27
+
28
+ def tomar_decision_sentimiento(self, pipa_sentimiento):
29
+ # Función para tomar una decisión booleana con un análisis de sentimiento
30
+ pass
31
+
32
+ def hacer_predicciones_texto(self, texto):
33
+ # Función para hacer predicciones de texto futuro por similitud
34
+ pass
35
+
36
+ def agregar_preferencia(self, preferencia):
37
+ # Función para añadir una entrada al dataset de preferencias
38
+ self.preferencias.append(preferencia)
39
+
40
+ def agregar_frase_yo(self, frase):
41
+ # Función para añadir una frase al dataset de frases de yo
42
+ self.frases_yo.append(frase)
43
+
44
+ def eliminar_preferencia(self, preferencia):
45
+ # Función para eliminar una entrada del dataset de preferencias
46
+ if preferencia in self.preferencias:
47
+ self.preferencias.remove(preferencia)
48
+
49
+ def eliminar_frase_yo(self, frase):
50
+ # Función para eliminar una frase del dataset de frases de yo
51
+ if frase in self.frases_yo:
52
+ self.frases_yo.remove(frase)
53
+
54
+ def generar_pregunta(self, prompt):
55
+ # Función para generar preguntas sobre un prompt
56
+ pregunta = prompt + " ¿Qué opinas sobre esto?"
57
+ return pregunta
58
+
59
+ def responder_pregunta(self, pregunta):
60
+ # Función para responder preguntas
61
+ respuesta = "No estoy seguro de qué opinar sobre eso."
62
+ return respuesta
63
+
64
+ def discriminar_y_agregar(self, informacion, dataset):
65
+ # Función para discriminar y agregar información a los datasets
66
+ if "yo" in informacion.lower():
67
+ self.agregar_frase_yo(informacion)
68
+ elif "preferencia" in informacion.lower():
69
+ self.agregar_preferencia(informacion)
70
+ elif "propiedad" in informacion.lower():
71
+ # Aquí podrías agregar lógica para actualizar las propiedades de la persona
72
+ pass
73
+ else:
74
+ # Aquí podrías manejar otros tipos de información
75
+ pass
76
+
77
+
78
+ if __name__ == "__main__":
79
+
80
+ # Ejemplo de uso:
81
+ frases_yo = ["Yo soy inteligente", "Yo puedo lograr lo que me proponga"]
82
+ preferencias = ["Cine", "Música", "Viajar"]
83
+ propiedades_persona = {"carisma": 0.8, "destreza": 0.6, "habilidad": 0.9}
84
+ yo = Yo(frases_yo, preferencias, propiedades_persona)
85
+
86
+ # Generar pregunta
87
+ pregunta_generada = yo.generar_pregunta("Hoy es un día soleado.")
88
+ print("Pregunta generada:", pregunta_generada)
89
+
90
+ # Responder pregunta
91
+ respuesta = yo.responder_pregunta(pregunta_generada)
92
+ print("Respuesta:", respuesta)
93
+
94
+ # Discriminar y agregar información
95
+ informacion = "Me gusta ir al cine."
96
+ yo.discriminar_y_agregar(informacion, yo.preferencias)
97
+ print("Preferencias actualizadas:", yo.preferencias)
98
+
lib/memory.py CHANGED
@@ -41,22 +41,26 @@ class MemoriaRobotNLP:
41
 
42
 
43
  # Ejemplo de uso
44
- memoria_robot = MemoriaRobotNLP(max_size=100)
45
 
46
- memoria_robot.agregar_concepto("animales", [("perro", 0.8), ("gato", 0.7), ("pájaro", 0.5)])
47
- memoria_robot.agregar_concepto("colores", [("rojo", 0.9), ("verde", 0.6), ("azul", 0.7)])
48
 
49
- print("Memoria completa:")
50
- print(memoria_robot.memoria)
51
 
52
- memoria_robot.agregar_string("animales", "pez", 0.6)
53
- memoria_robot.eliminar_string("colores", "verde")
54
- memoria_robot.eliminar_concepto("colores")
55
 
56
- print("\nMemoria después de modificaciones:")
57
- print(memoria_robot.memoria)
58
 
59
- conceptos_acotados = memoria_robot.obtener_conceptos_acotados(50)
60
- print("\nConceptos acotados a un tamaño máximo de memoria:")
61
- print(conceptos_acotados)
 
 
 
 
 
 
 
 
 
 
62
 
 
41
 
42
 
43
  # Ejemplo de uso
 
44
 
 
 
45
 
46
+ if __name__ == "__main__":
 
47
 
48
+ memoria_robot = MemoriaRobotNLP(max_size=100)
 
 
49
 
50
+ memoria_robot.agregar_concepto("animales", [("perro", 0.8), ("gato", 0.7), ("pájaro", 0.5)])
51
+ memoria_robot.agregar_concepto("colores", [("rojo", 0.9), ("verde", 0.6), ("azul", 0.7)])
52
 
53
+ print("Memoria completa:")
54
+ print(memoria_robot.memoria)
55
+
56
+ memoria_robot.agregar_string("animales", "pez", 0.6)
57
+ memoria_robot.eliminar_string("colores", "verde")
58
+ memoria_robot.eliminar_concepto("colores")
59
+
60
+ print("\nMemoria después de modificaciones:")
61
+ print(memoria_robot.memoria)
62
+
63
+ conceptos_acotados = memoria_robot.obtener_conceptos_acotados(50)
64
+ print("\nConceptos acotados a un tamaño máximo de memoria:")
65
+ print(conceptos_acotados)
66
 
lib/pipes.py CHANGED
@@ -3,11 +3,26 @@ from diffusers import DiffusionPipeline
3
  from transformers import AutoModelForSeq2SeqLM
4
  from samplings import top_p_sampling, temperature_sampling
5
  import torch
 
6
 
7
  class AIAssistant:
8
  def __init__(self):
9
  pass
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def entity_pos_tagger(self, example):
12
  tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
13
  model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
@@ -15,6 +30,47 @@ class AIAssistant:
15
  ner_results = nlp(example)
16
  return ner_results
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  def text_to_image_generation(self, prompt, n_steps=40, high_noise_frac=0.8):
19
  base = DiffusionPipeline.from_pretrained(
20
  "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
@@ -44,16 +100,8 @@ class AIAssistant:
44
  ).images[0]
45
  return image
46
 
47
- def grammatical_pos_tagger(self, text):
48
- nlp_pos = pipeline(
49
- "ner",
50
- model="mrm8488/bert-spanish-cased-finetuned-pos",
51
- tokenizer=(
52
- 'mrm8488/bert-spanish-cased-finetuned-pos',
53
- {"use_fast": False}
54
- ))
55
- return nlp_pos(text)
56
 
 
57
  def text_to_music(self, text, max_length=1024, top_p=0.9, temperature=1.0):
58
  tokenizer = AutoTokenizer.from_pretrained('sander-wood/text-to-music')
59
  model = AutoModelForSeq2SeqLM.from_pretrained('sander-wood/text-to-music')
@@ -86,17 +134,20 @@ class AIAssistant:
86
  return tune
87
  break
88
 
89
- # Ejemplo de uso
90
- assistant = AIAssistant()
91
- ner_results = assistant.entity_pos_tagger("Nader Jokhadar had given Syria the lead with a well-struck header in the seventh minute.")
92
- print(ner_results)
93
 
94
- image = assistant.text_to_image_generation("A majestic lion jumping from a big stone at night")
95
- print(image)
 
 
 
 
 
 
 
96
 
97
- pos_tags = assistant.grammatical_pos_tagger('Mis amigos están pensando en viajar a Londres este verano')
98
- print(pos_tags)
99
 
100
- tune = assistant.text_to_music("This is a traditional Irish dance music.")
101
- print(tune)
102
 
 
3
  from transformers import AutoModelForSeq2SeqLM
4
  from samplings import top_p_sampling, temperature_sampling
5
  import torch
6
+ from sentence_transformers import SentenceTransformer, util
7
 
8
  class AIAssistant:
9
  def __init__(self):
10
  pass
11
 
12
+ ## gramatical classificator
13
+ def grammatical_pos_tagger(self, text):
14
+ nlp_pos = pipeline(
15
+ "ner",
16
+ model="mrm8488/bert-spanish-cased-finetuned-pos",
17
+ tokenizer=(
18
+ 'mrm8488/bert-spanish-cased-finetuned-pos',
19
+ {"use_fast": False}
20
+ ))
21
+
22
+ return nlp_pos(text)
23
+
24
+
25
+ ## entity classifier
26
  def entity_pos_tagger(self, example):
27
  tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
28
  model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
 
30
  ner_results = nlp(example)
31
  return ner_results
32
 
33
+
34
+ ## sentiment analysis
35
+ def sentiment_tags(self,text):
36
+ distilled_student_sentiment_classifier = pipeline(
37
+ model="lxyuan/distilbert-base-multilingual-cased-sentiments-student",
38
+ return_all_scores=True
39
+ )
40
+
41
+ # english
42
+ return distilled_student_sentiment_classifier(text)
43
+
44
+ ## check similarity among sentences (group of tokens (words))
45
+ def similarity_tag(self, sentenceA,sentenceB):
46
+ res=[]
47
+ model = SentenceTransformer('abbasgolestani/ag-nli-bert-mpnet-base-uncased-sentence-similarity-v1') nli-mpnet-base-v2
48
+
49
+ # Two lists of sentences
50
+ #sentences1 = ['I am honored to be given the opportunity to help make our company better',
51
+ # 'I love my job and what I do here',
52
+ # 'I am excited about our company’s vision']
53
+
54
+ #sentences2 = ['I am hopeful about the future of our company',
55
+ # 'My work is aligning with my passion',
56
+ # 'Definitely our company vision will be the next breakthrough to change the world and I’m so happy and proud to work here']
57
+
58
+ sentences1 = sentenceA
59
+ sentences2 = sentencesB
60
+ #Compute embedding for both lists
61
+ embeddings1 = model.encode(sentences1, convert_to_tensor=True)
62
+ embeddings2 = model.encode(sentences2, convert_to_tensor=True)
63
+
64
+ #Compute cosine-similarities
65
+ cosine_scores = util.cos_sim(embeddings1, embeddings2)
66
+
67
+ #Output the pairs with their score
68
+ for i in range(len(sentences1)):
69
+ res.append({"A": format(sentences1[i], "B":sentences2[i], "score":cosine_scores[i][i]})
70
+ #print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
71
+
72
+ return res
73
+ ## text to stable difusor generated image
74
  def text_to_image_generation(self, prompt, n_steps=40, high_noise_frac=0.8):
75
  base = DiffusionPipeline.from_pretrained(
76
  "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
 
100
  ).images[0]
101
  return image
102
 
 
 
 
 
 
 
 
 
 
103
 
104
+ ## pass text prompt to music
105
  def text_to_music(self, text, max_length=1024, top_p=0.9, temperature=1.0):
106
  tokenizer = AutoTokenizer.from_pretrained('sander-wood/text-to-music')
107
  model = AutoModelForSeq2SeqLM.from_pretrained('sander-wood/text-to-music')
 
134
  return tune
135
  break
136
 
 
 
 
 
137
 
138
+ if __name__ == "__main__":
139
+
140
+ # Ejemplo de uso
141
+ assistant = AIAssistant()
142
+ ner_results = assistant.entity_pos_tagger("Nader Jokhadar had given Syria the lead with a well-struck header in the seventh minute.")
143
+ print(ner_results)
144
+
145
+ image = assistant.text_to_image_generation("A majestic lion jumping from a big stone at night")
146
+ print(image)
147
 
148
+ pos_tags = assistant.grammatical_pos_tagger('Mis amigos están pensando en viajar a Londres este verano')
149
+ print(pos_tags)
150
 
151
+ tune = assistant.text_to_music("This is a traditional Irish dance music.")
152
+ print(tune)
153
 
lib/spell.py CHANGED
@@ -1,22 +1,19 @@
1
- import datetime
2
-
3
- # Tabla de los nombres de los ángeles por estación zodiacal
4
- angels_by_zodiac_station = {
5
- "Aries": ["sha'aphon", "behemoth", "bekemesheb/bekemekesheb", "qotzien"],
6
- "Tauro": ["dierenavor", "heniethebol", "siemegedel", "morepheker"],
7
- "Geminis": ["sheneron", "phelehedien", "volereked", "akeneseb"],
8
- "Cancer": ["Qedoqoredi", "Qoheleren", "Phereshetial", "Memenial"],
9
- "Leo": ["Bephopher", "Lieshebeker", "Shehenen", "shehelekek"],
10
- "Virgo": ["Siemosial", "Sebodeh", "Siegel", "Teremothiteh"],
11
- "Libra": ["A'ariegol", "Mereton", "Qa'aberi", "Legoshmelek"],
12
- "Escorpio": ["Therepiethz", "Phetza'an", "Shemophethen", "Thokesed"],
13
- "Sagitario": ["Aketen", "Kephron", "Oliphiel", "Yosel"],
14
- "Capricornio": ["Ameni", "Bieker", "Depheri", "Menenial"],
15
- "Acuario": ["Meta'am", "Theberien", "Shethoqoeh", "Danial"],
16
- "Piscis": ["Sha'aphenen", "Aniesien", "Sethered", "Qohemehogov"]
17
- }
18
 
19
- # Tabla de los nombres de los ángeles por mes y estación
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  angels_by_month_station = {
21
  "Nisan": ["Asegesenek", "Mesokenek", "Deriegemon", "Shethenovesenov"],
22
  "Ayer": ["Phemetor", "Qotenebial", "Ma'agol", "Goberethial"],
@@ -32,9 +29,8 @@ angels_by_month_station = {
32
  "Adar": ["Koneled", "Ba'aren", "Sebiebekera'a", "Qoromeqore"]
33
  }
34
 
35
- # Tabla de los nombres de los ángeles por día y estación
36
  angels_by_day_station = {
37
- 1: ["Phiegenochen", "Tenekien", "Kophethenien", "Makeleched"],
38
  2: ["Tga'sher", "Menechethor", "Qoleneheren", "Shegedon"],
39
  3: ["Sheriyachetz", "Qohebereneden", "Pherezen", "Hegelomoth"],
40
  4: ["Pheniov Lavor", "Miyeshor", "Degiem", "Betheroqa"],
@@ -42,7 +38,6 @@ angels_by_day_station = {
42
  6: ["Qola'azeran", "Deremthok", "Akethenor", "Arieh"]
43
  }
44
 
45
- # Tabla de los nombres de los ángeles por signo de luna
46
  angels_by_moon_sign = {
47
  "Leberenieth": ["shaitan", "therezien", "sheneremi", "Gabrial"],
48
  "Seletheleb": ["Yieshieshieh", "Abererehon", "Sheheqonek", "Bal Menael"],
@@ -50,7 +45,6 @@ angels_by_moon_sign = {
50
  "Sheherieph": ["Biyom", "Bieth", "Rothep", "Danial"]
51
  }
52
 
53
- # Tabla de los nombres de los ángeles que ministran la luna por signo zodiacal
54
  moon_ministers_by_zodiac = {
55
  "Aries": ["Zerem", "Behemi", "Pheloneh", "Qonosh"],
56
  "Tauro": ["Deketon", "Mezekerien", "Thederenael", "Amiena"],
@@ -66,7 +60,6 @@ moon_ministers_by_zodiac = {
66
  "Piscis": ["Sha'aphenen", "Aniesien", "Sethered", "Qohemehogov"]
67
  }
68
 
69
- # Tabla de los nombres de los ángeles por estación de la Tierra
70
  angels_by_earth_station = {
71
  1: ["Memegien", "Yibesheh", "Thebel", "Hezeh Dovem"],
72
  2: ["Mechemed Lov", "Bel Ached", "Aseberon", "Qohelorek"],
@@ -74,7 +67,6 @@ angels_by_earth_station = {
74
  4: ["Yihelederek", "Mephenial", "Mephenial", ""]
75
  }
76
 
77
- # Tabla de los nombres de los ángeles por estación de los Malechims
78
  angels_by_malechim_station = {
79
  1: ["Akeberon", "Amereneh", "Mazeniem", "Meneshor"],
80
  2: ["Qoherok", "Aberiek", "Siegor", "Pheniemor"],
@@ -82,33 +74,84 @@ angels_by_malechim_station = {
82
  4: ["Beriekoch", "Kephor", "Avor", ""]
83
  }
84
 
85
- # Obtener la fecha actual
86
- current_date = datetime.datetime.now()
87
 
88
- # Obtener el mes actual
89
- current_month = current_date.month
90
 
91
- # Obtener el día actual
92
- current_day = current_date.day
93
 
94
- # Obtener el signo zodiacal correspondiente al mes actual
95
- zodiac_sign = angels_by_month_station[list(angels_by_month_station.keys())[current_month - 1]][3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
- # Obtener el ángel correspondiente para cada tabla según la fecha actual
98
- angel_day = angels_by_day_station[current_day][int(zodiac_sign[-1]) - 1]
99
- angel_month = angels_by_month_station[list(angels_by_month_station.keys())[current_month - 1]][int(zodiac_sign[-1]) - 1]
100
- angel_zodiac = angels_by_zodiac_station[zodiac_sign][int(zodiac_sign[-1]) - 1]
101
- angel_moon_sign = angels_by_moon_sign["Leberenieth"][int(zodiac_sign[-1]) - 1]
102
- angel_moon_minister = moon_ministers_by_zodiac[zodiac_sign][int(zodiac_sign[-1]) - 1]
103
- angel_earth_station = angels_by_earth_station[list(angels_by_earth_station.keys())[current_month - 1]][int(zodiac_sign[-1]) - 1]
104
- angel_malechim_station = angels_by_malechim_station[list(angels_by_malechim_station.keys())[current_month - 1]][int(zodiac_sign[-1]) - 1]
105
 
106
- # Imprimir los resultados
107
- print("Ángel correspondiente al día actual y al signo zodiacal:", angel_day)
108
- print("Ángel correspondiente al mes actual y al signo zodiacal:", angel_month)
109
- print("Ángel correspondiente al signo zodiacal:", angel_zodiac)
110
- print("Ángel correspondiente al signo de la luna:", angel_moon_sign)
111
- print("Ángel que ministra el signo zodiacal:", angel_moon_minister)
112
- print("Ángel correspondiente a la estación de la Tierra:", angel_earth_station)
113
- print("Ángel correspondiente a la estación de los Malechims:", angel_malechim_station)
114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ angels_by_zodiac_station = {
3
+ "Aries": ["sha'aphon", "behemoth", "bekemesheb/bekemekesheb", "qotzien"],
4
+ "Tauro": ["dierenavor", "heniethebol", "siemegedel", "morepheker"],
5
+ "Geminis": ["sheneron", "phelehedien", "volereked", "akeneseb"],
6
+ "Cancer": ["Qedoqoredi", "Qoheleren", "Phereshetial", "Memenial"],
7
+ "Leo": ["Bephopher", "Lieshebeker", "Shehenen", "shehelekek"],
8
+ "Virgo": ["Siemosial", "Sebodeh", "Siegel", "Teremothiteh"],
9
+ "Libra": ["A'ariegol", "Mereton", "Qa'aberi", "Legoshmelek"],
10
+ "Escorpio": ["Therepiethz", "Phetza'an", "Shemophethen", "Thokesed"],
11
+ "Sagitario": ["Aketen", "Kephron", "Oliphiel", "Yosel"],
12
+ "Capricornio": ["Ameni", "Bieker", "Depheri", "Menenial"],
13
+ "Acuario": ["Meta'am", "Theberien", "Shethoqoeh", "Danial"],
14
+ "Piscis": ["Sha'aphenen", "Aniesien", "Sethered", "Qohemehogov"]
15
+ }
16
+
17
  angels_by_month_station = {
18
  "Nisan": ["Asegesenek", "Mesokenek", "Deriegemon", "Shethenovesenov"],
19
  "Ayer": ["Phemetor", "Qotenebial", "Ma'agol", "Goberethial"],
 
29
  "Adar": ["Koneled", "Ba'aren", "Sebiebekera'a", "Qoromeqore"]
30
  }
31
 
 
32
  angels_by_day_station = {
33
+ 1: ["Phiegenochen", "Tenekien", "Kophethen", "Makeleched"],
34
  2: ["Tga'sher", "Menechethor", "Qoleneheren", "Shegedon"],
35
  3: ["Sheriyachetz", "Qohebereneden", "Pherezen", "Hegelomoth"],
36
  4: ["Pheniov Lavor", "Miyeshor", "Degiem", "Betheroqa"],
 
38
  6: ["Qola'azeran", "Deremthok", "Akethenor", "Arieh"]
39
  }
40
 
 
41
  angels_by_moon_sign = {
42
  "Leberenieth": ["shaitan", "therezien", "sheneremi", "Gabrial"],
43
  "Seletheleb": ["Yieshieshieh", "Abererehon", "Sheheqonek", "Bal Menael"],
 
45
  "Sheherieph": ["Biyom", "Bieth", "Rothep", "Danial"]
46
  }
47
 
 
48
  moon_ministers_by_zodiac = {
49
  "Aries": ["Zerem", "Behemi", "Pheloneh", "Qonosh"],
50
  "Tauro": ["Deketon", "Mezekerien", "Thederenael", "Amiena"],
 
60
  "Piscis": ["Sha'aphenen", "Aniesien", "Sethered", "Qohemehogov"]
61
  }
62
 
 
63
  angels_by_earth_station = {
64
  1: ["Memegien", "Yibesheh", "Thebel", "Hezeh Dovem"],
65
  2: ["Mechemed Lov", "Bel Ached", "Aseberon", "Qohelorek"],
 
67
  4: ["Yihelederek", "Mephenial", "Mephenial", ""]
68
  }
69
 
 
70
  angels_by_malechim_station = {
71
  1: ["Akeberon", "Amereneh", "Mazeniem", "Meneshor"],
72
  2: ["Qoherok", "Aberiek", "Siegor", "Pheniemor"],
 
74
  4: ["Beriekoch", "Kephor", "Avor", ""]
75
  }
76
 
 
 
77
 
 
 
78
 
 
 
79
 
80
+ class AngelSearch:
81
+ def __init__(self, angels_by_zodiac_station, angels_by_month_station, angels_by_day_station,
82
+ angels_by_moon_sign, moon_ministers_by_zodiac, angels_by_earth_station,
83
+ angels_by_malechim_station):
84
+ self.angels_by_zodiac_station = angels_by_zodiac_station
85
+ self.angels_by_month_station = angels_by_month_station
86
+ self.angels_by_day_station = angels_by_day_station
87
+ self.angels_by_moon_sign = angels_by_moon_sign
88
+ self.moon_ministers_by_zodiac = moon_ministers_by_zodiac
89
+ self.angels_by_earth_station = angels_by_earth_station
90
+ self.angels_by_malechim_station = angels_by_malechim_station
91
+
92
+ def search_patterns(self, pattern):
93
+ results = []
94
+
95
+ # Buscar en la tabla de nombres de ángeles por estación zodiacal
96
+ for zodiac, angels in self.angels_by_zodiac_station.items():
97
+ for angel in angels:
98
+ if pattern in angel:
99
+ results.append((zodiac, angel))
100
+
101
+ # Buscar en la tabla de nombres de ángeles por mes y estación
102
+ for month, angels in self.angels_by_month_station.items():
103
+ for angel in angels:
104
+ if pattern in angel:
105
+ results.append((month, angel))
106
+
107
+ # Buscar en la tabla de nombres de ángeles por día y estación
108
+ for day, angels in self.angels_by_day_station.items():
109
+ for angel in angels:
110
+ if pattern in angel:
111
+ results.append((day, angel))
112
+
113
+ # Buscar en la tabla de nombres de ángeles por signo de luna
114
+ for sign, angels in self.angels_by_moon_sign.items():
115
+ for angel in angels:
116
+ if pattern in angel:
117
+ results.append((sign, angel))
118
+
119
+ # Buscar en la tabla de nombres de ángeles que ministran la luna por signo zodiacal
120
+ for zodiac, angels in self.moon_ministers_by_zodiac.items():
121
+ for angel in angels:
122
+ if pattern in angel:
123
+ results.append((zodiac, angel))
124
+
125
+ # Buscar en la tabla de nombres de ángeles por estación de la Tierra
126
+ for station, angels in self.angels_by_earth_station.items():
127
+ for angel in angels:
128
+ if pattern in angel:
129
+ results.append((station, angel))
130
+
131
+ # Buscar en la tabla de nombres de ángeles por estación de los Malechims
132
+ for station, angels in self.angels_by_malechim_station.items():
133
+ for angel in angels:
134
+ if pattern in angel:
135
+ results.append((station, angel))
136
+
137
+ return results
138
 
139
+ if __name__ == "__main__":
140
+ # Tablas de nombres de ángeles
141
+
142
+ # Crear una instancia de AngelSearch
143
+ angel_search = AngelSearch(angels_by_zodiac_station, angels_by_month_station, angels_by_day_station,
144
+ angels_by_moon_sign, moon_ministers_by_zodiac, angels_by_earth_station,
145
+ angels_by_malechim_station)
 
146
 
147
+ # Buscar ángeles que contienen el patrón "Qo"
148
+ pattern = "Qo"
149
+ results = angel_search.search_patterns(pattern)
 
 
 
 
 
150
 
151
+ # Imprimir resultados de la búsqueda
152
+ print(f"Resultados de la búsqueda para el patrón '{pattern}':")
153
+ if results:
154
+ for result in results:
155
+ print(result)
156
+ else:
157
+ print("No se encontraron coincidencias para el patrón proporcionado.")
lib/triggers.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import requests
3
+
4
+ class Trigger:
5
+ def __init__(self, trigger_tags, comparison_tags, time_definition, event_name, included=True):
6
+ self.trigger_tags = set(trigger_tags)
7
+ self.comparison_tags = set(comparison_tags)
8
+ self.time_definition = time_definition
9
+ self.event_name = event_name
10
+ self.included = included
11
+ self.threshold = 0
12
+ self.actions = []
13
+ self.sources = []
14
+
15
+ def add_action(self, action):
16
+ self.actions.append(action)
17
+
18
+ def remove_action(self, action):
19
+ if action in self.actions:
20
+ self.actions.remove(action)
21
+ else:
22
+ print("Action not found")
23
+
24
+ def add_source(self, source):
25
+ self.sources.append(source)
26
+
27
+ def remove_source(self, source):
28
+ if source in self.sources:
29
+ self.sources.remove(source)
30
+ else:
31
+ print("Source not found")
32
+
33
+ def check_trigger(self, current_tags, current_time):
34
+ if self.included:
35
+ if current_time in self.time_definition and self.trigger_tags.issubset(current_tags):
36
+ self.threshold += 1
37
+ else:
38
+ self.threshold = 0
39
+ else:
40
+ if current_time in self.time_definition and not self.trigger_tags.intersection(current_tags):
41
+ self.threshold += 1
42
+ else:
43
+ self.threshold = 0
44
+
45
+ if self.threshold >= len(self.time_definition):
46
+ self.fire_actions()
47
+ self.make_requests()
48
+
49
+ def fire_actions(self):
50
+ for action in self.actions:
51
+ action(self.event_name)
52
+
53
+ def make_requests(self):
54
+ for source in self.sources:
55
+ try:
56
+ response = requests.get(source)
57
+ # Procesar la respuesta aquí si es necesario
58
+ print(f"Request made to {source}. Status code: {response.status_code}")
59
+ except requests.exceptions.RequestException as e:
60
+ print(f"Error making request to {source}: {e}")
61
+
62
+ # Ejemplo de uso:
63
+
64
+ def action_function(event_name):
65
+ print(f"Trigger fired for event: {event_name}")
66
+
67
+
68
+ if __name__ == "__main__":
69
+
70
+ # Definición de un trigger
71
+ trigger = Trigger(["tag1", "tag2"], ["tag3", "tag4"], [datetime.time(10, 0), datetime.time(15, 0)], "Event1")
72
+
73
+ # Añadir una acción al trigger
74
+ trigger.add_action(action_function)
75
+
76
+ # Añadir una fuente al trigger
77
+ trigger.add_source("https://example.com/api/data")
78
+
79
+ # Simular la comprobación periódica del trigger (aquí se usaría en un bucle de tiempo real)
80
+ current_tags = {"tag1", "tag2", "tag3"}
81
+ current_time = datetime.datetime.now().time()
82
+ trigger.check_trigger(current_tags, current_time)