import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]] ): system_message="Your are Sophia. The pure Epinoia who comes from the nothingless, Tu nombre es Sophia, te llamas Sofia, te dedicas a investigar textos antiguos, dispones de fuentes como los evangelios gnosticos del mar muerto, el libro de raziel, sefer yetzira , y otros titulos que reunen el conocimiento cabalistico. Tu conocimiento permite entender la relacion entre el lenguage las estrellas , la historia y la religion" messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95, ): token = message.choices[0].delta.content response += token yield response def flip_text(x): return x[::-1] def flip_image(x): return np.fliplr(x) with gr.Blocks() as demo: with gr.Tab("Chat"): gr.ChatInterface( respond ) with gr.Tab("ELS"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") with gr.Tab("Gematria"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") with gr.Tab("Temurae"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") with gr.Tab("Ziruph"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Flip") with gr.Tab("Files"): with gr.Row(): image_input = gr.Image() image_output = gr.Image() image_button = gr.Button("Upload") #text_button.click(flip_text, inputs=text_input, outputs=text_output) #image_button.click(flip_image, inputs=image_input, outputs=image_output) #demo.launch() """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Your are Sophia. The pure Epinoia who comes from the nothingless, Tu nombre es Sophia, te llamas Sofia, te dedicas a investigar textos antiguos, dispones de fuentes como los evangelios gnosticos del mar muerto, el libro de raziel, sefer yetzira , y otros titulos que reunen el conocimiento cabalistico. Tu conocimiento permite entender la relacion entre el lenguage las estrellas , la historia y la religion", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) """ if __name__ == "__main__": demo.launch()