Spaces:
Running
Running
tori29umai
commited on
Commit
•
ee14fdf
1
Parent(s):
3ea2029
Add application file
Browse files
app.py
CHANGED
@@ -1,7 +1,81 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageFilter, ImageOps
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
from collections import defaultdict
|
7 |
+
from skimage.color import deltaE_ciede2000, rgb2lab
|
8 |
|
9 |
+
# XDoGフィルターを適用する関数
|
10 |
+
def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
|
11 |
+
epsilon /= 255
|
12 |
+
g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
|
13 |
+
g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
|
14 |
+
dog = g1 - gamma * g2
|
15 |
+
dog /= dog.max()
|
16 |
+
e = 1 + np.tanh(phi * (dog - epsilon))
|
17 |
+
e[e >= 1] = 1
|
18 |
+
return (e * 255).astype('uint8')
|
19 |
|
20 |
+
# 画像を二値化する関数
|
21 |
+
def binarize_image(image):
|
22 |
+
_, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
23 |
+
return binarized
|
24 |
+
|
25 |
+
# XDoGフィルターを画像に適用し、その後二値化する関数
|
26 |
+
def process_XDoG(image_path):
|
27 |
+
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
28 |
+
xdog_image = XDoG_filter(image)
|
29 |
+
binarized_image = binarize_image(xdog_image)
|
30 |
+
return Image.fromarray(binarized_image)
|
31 |
+
|
32 |
+
# 主要な色を取得する関数
|
33 |
+
def get_major_colors(image, threshold_percentage=0.01):
|
34 |
+
if image.mode != 'RGB':
|
35 |
+
image = image.convert('RGB')
|
36 |
+
color_count = defaultdict(int)
|
37 |
+
for pixel in image.getdata():
|
38 |
+
color_count[pixel] += 1
|
39 |
+
total_pixels = image.width * image.height
|
40 |
+
major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
|
41 |
+
return major_colors
|
42 |
+
|
43 |
+
# 色を統合する関数
|
44 |
+
def consolidate_colors(major_colors, threshold):
|
45 |
+
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
|
46 |
+
i = 0
|
47 |
+
while i < len(colors_lab):
|
48 |
+
j = i + 1
|
49 |
+
while j < len(colors_lab):
|
50 |
+
if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
|
51 |
+
if major_colors[i][1] >= major_colors[j][1]:
|
52 |
+
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
|
53 |
+
major_colors.pop(j)
|
54 |
+
colors_lab.pop(j)
|
55 |
+
else:
|
56 |
+
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
|
57 |
+
major_colors.pop(i)
|
58 |
+
colors_lab.pop(i)
|
59 |
+
continue
|
60 |
+
j += 1
|
61 |
+
i += 1
|
62 |
+
return major_colors
|
63 |
+
|
64 |
+
# Gradioインターフェース用のメイン関数
|
65 |
+
def gradio_interface(image):
|
66 |
+
image_path = 'temp_input_image.jpg'
|
67 |
+
image.save(image_path)
|
68 |
+
lineart = process_XDoG(image_path).convert('L')
|
69 |
+
processed_image = ImageOps.invert(lineart)
|
70 |
+
return processed_image
|
71 |
+
|
72 |
+
# Gradioアプリを設定し、起動する
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=gradio_interface,
|
75 |
+
inputs=gr.inputs.Image(type='pil', label="Original Image"),
|
76 |
+
outputs=gr.outputs.Image(type='pil', label="Processed Image"),
|
77 |
+
title="Line Art Removal",
|
78 |
+
description="画像をアップロードして線画を除去します。"
|
79 |
+
)
|
80 |
+
|
81 |
+
iface.launch()
|