Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,767 Bytes
dce20cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL
from PIL import Image
import os
import time
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_lora_model
from utils.image_utils import resize_image_aspect_ratio, base_generation
from utils.prompt_utils import remove_duplicates
path = os.getcwd()
cn_dir = f"{path}/controlnet"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)
dl_cn_model(cn_dir)
dl_cn_config(cn_dir)
dl_lora_model(lora_dir)
def load_model(lora_dir, cn_dir):
dtype = torch.float16
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.load_lora_weights(lora_dir, weight_name="Fixhands_anime_bdsqlsz_V1.safetensors")
return pipe
@spaces.GPU(duration=120)
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
pipe = load_model(lora_dir, cn_dir)
input_image = Image.open(input_image_path)
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
resize_image = resize_image_aspect_ratio(input_image)
resize_base_image = resize_image_aspect_ratio(base_image)
generator = torch.manual_seed(0)
last_time = time.time()
prompt = "masterpiece, best quality, simple background, white background, bald, nude, " + prompt
prompt = remove_duplicates(prompt)
print(prompt)
output_image = pipe(
image=resize_base_image,
control_image=resize_image,
strength=1.0,
prompt=prompt,
negative_prompt = negative_prompt,
controlnet_conditioning_scale=float(controlnet_scale),
generator=generator,
num_inference_steps=30,
eta=1.0,
).images[0]
print(f"Time taken: {time.time() - last_time}")
output_image = output_image.resize(input_image.size, Image.LANCZOS)
return output_image
class Img2Img:
def __init__(self):
self.demo = self.layout()
self.tagger_model = None
self.input_image_path = None
self.canny_image = None
def layout(self):
css = """
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
self.input_image_path = gr.Image(label="input_image", type='filepath')
self.prompt = gr.Textbox(label="prompt", lines=3)
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="nsfw, nipples, bad anatomy, liquid fingers, low quality, worst quality, out of focus, ugly, error, jpeg artifacts, lowers, blurry, bokeh")
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.01, label="Stick_fidelity")
generate_button = gr.Button("generate")
with gr.Column():
self.output_image = gr.Image(type="pil", label="output_image")
generate_button.click(
fn=predict,
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
outputs=self.output_image
)
return demo
img2img = Img2Img()
img2img.demo.launch(share=True)
|