Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,833 Bytes
3542be4 d472855 3542be4 c689a76 0c23f7f 27419c1 3542be4 953a099 402fe71 2bd18a2 953a099 c7df0ab 953a099 c7df0ab 953a099 d5b61f5 57ffff6 953a099 402fe71 0c23f7f 3515ae5 402fe71 d472855 402fe71 d472855 402fe71 a50b44f 402fe71 6dbbd62 06642da 4948a0e 6dbbd62 776de3e 6dbbd62 27419c1 402fe71 2b32e3d 5826348 4469e93 402fe71 72dca33 402fe71 72dca33 402fe71 72dca33 2b32e3d 72dca33 2b32e3d f091221 6dbbd62 f091221 2b32e3d 2098e9c 2b32e3d 402fe71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL
from PIL import Image
import os
import time
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
from utils.tagger import modelLoad, analysis
path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(tagger_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)
load_cn_model(cn_dir)
load_cn_config(cn_dir)
load_tagger_model(tagger_dir)
load_lora_model(lora_dir)
def load_model(lora_dir, cn_dir):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
)
pipe.load_lora_weights(lora_dir, weight_name="sdxl_BW_bold_Line.safetensors", adapter_name="sdxl_BW_bold_Line")
pipe.set_adapters(["sdxl_BW_bold_Line"], adapter_weights=[1.2])
pipe.fuse_lora()
pipe = pipe.to(device)
return pipe
@spaces.GPU
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
pipe = load_model(lora_dir, cn_dir)
input_image_pil = Image.open(input_image_path)
base_size = input_image_pil.size
resize_image = resize_image_aspect_ratio(input_image_pil)
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
generator = torch.manual_seed(0)
last_time = time.time()
prompt = "masterpiece, best quality, monochrome, lineart, white background, " + prompt
execute_tags = ["sketch", "transparent background"]
prompt = execute_prompt(execute_tags, prompt)
prompt = remove_duplicates(prompt)
prompt = remove_color(prompt)
print(prompt)
output_image = pipe(
image=white_base_pil,
control_image=resize_image,
strength=1.0,
prompt=prompt,
negative_prompt = negative_prompt,
controlnet_conditioning_scale=float(controlnet_scale),
generator=generator,
num_inference_steps=30,
eta=1.0,
).images[0]
print(f"Time taken: {time.time() - last_time}")
output_image = output_image.resize(base_size, Image.LANCZOS)
return output_image
class Img2Img:
def __init__(self):
self.demo = self.layout()
self.post_filter = True
self.tagger_model = None
self.input_image_path = None
def process_prompt_analysis(self, input_image_path):
if self.tagger_model is None:
self.tagger_model = modelLoad(tagger_dir)
tags = analysis(input_image_path, tagger_dir, self.tagger_model)
tags_list = tags
if self.post_filter:
tags_list = remove_color(tags)
return tags_list
def layout(self):
css = """
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
self.input_image_path = gr.Image(label="input_image", type='filepath')
self.prompt = gr.Textbox(label="prompt", lines=3)
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
prompt_analysis_button = gr.Button("prompt_analysis")
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="controlnet_scale")
generate_button = gr.Button("generate")
with gr.Column():
self.output_image = gr.Image(type="pil", label="output_image")
prompt_analysis_button.click(
self.process_prompt_analysis,
inputs=[self.input_image_path],
outputs=self.prompt
)
generate_button.click(
fn=predict,
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
outputs=self.output_image
)
return demo
img2img = Img2Img()
img2img.demo.launch(share=True)
|