sketch2lineart / app.py
tori29umai's picture
app.py
6904b31
raw
history blame
4.62 kB
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL
from PIL import Image
import os
import time
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
from utils.image_utils import resize_image_aspect_ratio, base_generation
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
from utils.tagger import modelLoad, analysis
path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(tagger_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)
dl_cn_model(cn_dir)
dl_cn_config(cn_dir)
dl_tagger_model(tagger_dir)
dl_lora_model(lora_dir)
def load_model(lora_dir, cn_dir):
dtype = torch.float16
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.load_lora_weights(lora_dir, weight_name="lineart.safetensors")
return pipe
@spaces.GPU
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
pipe = load_model(lora_dir, cn_dir)
input_image = Image.open(input_image_path)
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
resize_image = resize_image_aspect_ratio(input_image)
resize_base_image = resize_image_aspect_ratio(base_image)
generator = torch.manual_seed(0)
last_time = time.time()
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, " + prompt
execute_tags = ["sketch", "transparent background"]
prompt = execute_prompt(execute_tags, prompt)
prompt = remove_duplicates(prompt)
prompt = remove_color(prompt)
print(prompt)
output_image = pipe(
image=resize_base_image,
control_image=resize_image,
strength=1.0,
prompt=prompt,
negative_prompt = negative_prompt,
controlnet_conditioning_scale=float(controlnet_scale),
generator=generator,
num_inference_steps=30,
eta=1.0,
).images[0]
print(f"Time taken: {time.time() - last_time}")
output_image = output_image.resize(input_image.size, Image.LANCZOS)
return output_image
class Img2Img:
def __init__(self):
self.demo = self.layout()
self.tagger_model = None
self.input_image_path = None
self.canny_image = None
def process_prompt_analysis(self, input_image_path):
if self.tagger_model is None:
self.tagger_model = modelLoad(tagger_dir)
tags = analysis(input_image_path, tagger_dir, self.tagger_model)
tags_list = remove_color(tags)
return tags_list
def layout(self):
css = """
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
self.input_image_path = gr.Image(label="input_image", type='filepath')
self.prompt = gr.Textbox(label="prompt", lines=3)
self.negative_prompt = gr.Textbox(label="negative_prompt", lines=3, value="lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
prompt_analysis_button = gr.Button("prompt_analysis")
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="controlnet_scale")
generate_button = gr.Button("generate")
with gr.Column():
self.output_image = gr.Image(type="pil", label="output_image")
prompt_analysis_button.click(
self.process_prompt_analysis,
inputs=[self.input_image_path],
outputs=self.prompt
)
generate_button.click(
fn=predict,
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
outputs=self.output_image
)
return demo
img2img = Img2Img()
img2img.demo.launch(share=True)