torileatherman's picture
Update app.py
c5274ee
raw
history blame
4.69 kB
import gradio as gr
from datasets import load_dataset, Dataset
import pandas as pd
from huggingface_hub import create_repo
from huggingface_hub import login
login(token='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')
dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train')
predictions_df = pd.DataFrame(dataset)
grouped_predictions = predictions_df.groupby(predictions_df.Prediction)
positive_preds = grouped_predictions.get_group(2)
neutral_preds = grouped_predictions.get_group(1)
negative_preds = grouped_predictions.get_group(0)
predictions_df['Prediction'] = predictions_df['Prediction'].map({0: 'Negative', 1: 'Neutral', 2: 'Positive'})
def article_selection(sentiment):
if sentiment == "Positive":
predictions = positive_preds
top3 = predictions[0:3]
top3_result = top3[['Headline_string','Url']]
top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'})
return top3_result
elif sentiment == "Negative":
predictions = negative_preds
top3 = predictions[0:3]
top3_result = top3[['Headline_string','Url']]
top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'})
return top3_result
else:
predictions = neutral_preds
top3 = predictions[0:3]
top3_result = top3[['Headline_string','Url']]
top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'})
return top3_result
def manual_label():
# Selecting random row from batch data
random_sample = predictions_df.sample()
#random_sample_ds = Dataset.from_pandas(random_sample)
#random_sample.to_csv('/Users/torileatherman/Github/ID2223_scalable_machine_learning/news_articles_sentiment/sample.csv', index=False)
#random_sample_ds.push_to_hub('torileatherman/sample', index=False)
random_headline = random_sample['Headline_string'].iloc[0]
random_prediction = random_sample['Prediction'].iloc[0]
return random_headline, random_prediction
def thanks(sentiment):
labeled_sentiments = []
labeled_sentiments.append(sentiment)
#counter = len(labeled_sentiments)
#counter = str(counter)
#login(token = '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')
#create_repo("torileatherman/"+counter+"labeled_data")
labeled_sentiments = pd.DataFrame(labeled_sentiments, columns = ['Manual Predictions'])
labeled_sentiments.to_csv('/Users/torileatherman/Github/ID2223_scalable_machine_learning/news_articles_sentiment/manual_labels.csv', index=False)
#labeled_sentiments = Dataset.from_pandas(labeled_sentiments)
#labeled_sentiments.push_to_hub("torileatherman/"+counter+"labeled_data")
return f"""Thank you for making our model better!"""
description1 = '''
This application recommends news articles depending on the sentiment of the headline.
Enter your preference of what type of news articles you would like recommended to you today: Positive, Negative, or Neutral.
'''
description2 = '''
This application will show you a random news headline and our predicted sentiment.
In order to improve our model, mark the real sentiment of this headline!
'''
suggestion_demo = gr.Interface(
fn=article_selection,
title = 'Recommending News Articles',
inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
outputs = "dataframe",
#outputs = [gr.Textbox(label="Recommended News Articles (1/3)"),gr.Textbox(label="Recommended News Articles (2/3)"),gr.Textbox(label="Recommended News Articles (3/3)")],
description = description1
)
with gr.Blocks() as manual_label_demo:
description = description2
generate_btn = gr.Button('Show me a headline!')
generate_btn.click(fn=manual_label, outputs=[gr.Textbox(label="News Headline"),gr.Textbox(label="Our Predicted Sentiment")])
drop_down_label = gr.Dropdown(["Positive","Negative","Neutral"], label="Select the true sentiment of the news article.")
submit_btn = gr.Button('Submit your sentiment!')
submit_btn.click(fn=thanks, inputs=drop_down_label, outputs=gr.Textbox())
manual_label_demo1 = gr.Interface(
fn=thanks,
title="Manually Label a News Article",
inputs=[gr.Textbox(label = "Paste in URL of news article here."),
gr.Dropdown(["Positive","Negative","Neutral"], label="Select the sentiment of the news article.")],
outputs = gr.Textbox(label="Output"),
description = description2
)
demo = gr.TabbedInterface([suggestion_demo, manual_label_demo], ["Get recommended news articles", "Help improve our model"])
demo.launch()