torileatherman commited on
Commit
b59e911
·
1 Parent(s): 8c1a379

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -8
app.py CHANGED
@@ -29,7 +29,6 @@ def article_selection(sentiment):
29
  predictions_df_url1 = predictions['Url'].iloc[1]
30
  predictions_df_url2 = predictions['Url'].iloc[2]
31
  return predictions_df_url0, predictions_df_url1, predictions_df_url2
32
-
33
  else:
34
  predictions = negative_preds
35
  predictions_df_url0 = predictions['Url'].iloc[0]
@@ -37,9 +36,16 @@ def article_selection(sentiment):
37
  predictions_df_url2 = predictions['Url'].iloc[2]
38
  return predictions_df_url0, predictions_df_url1, predictions_df_url2
39
 
40
- def thanks(url, sentiment):
41
- thanks_text = "Thank you for making our model better!"
42
- return thanks_text
 
 
 
 
 
 
 
43
 
44
  description1 = '''
45
  This application recommends news articles depending on the sentiment of the headline.
@@ -47,9 +53,8 @@ description1 = '''
47
  '''
48
 
49
  description2 = '''
50
- This application recommends news articles depending on the sentiment of the headline.
51
- Enter a news article url and its sentiment to help us improve our model.
52
- The more data we have, the better news articles we can recommend to you!
53
  '''
54
 
55
  suggestion_demo = gr.Interface(
@@ -60,7 +65,12 @@ suggestion_demo = gr.Interface(
60
  description = description1
61
  )
62
 
63
- manual_label_demo = gr.Interface(
 
 
 
 
 
64
  fn=thanks,
65
  title="Manually Label a News Article",
66
  inputs=[gr.Textbox(label = "Paste in URL of news article here."),
 
29
  predictions_df_url1 = predictions['Url'].iloc[1]
30
  predictions_df_url2 = predictions['Url'].iloc[2]
31
  return predictions_df_url0, predictions_df_url1, predictions_df_url2
 
32
  else:
33
  predictions = negative_preds
34
  predictions_df_url0 = predictions['Url'].iloc[0]
 
36
  predictions_df_url2 = predictions['Url'].iloc[2]
37
  return predictions_df_url0, predictions_df_url1, predictions_df_url2
38
 
39
+ def manual_label(sentiment):
40
+ # Encoding sentiment data
41
+ predictions_df['Sentiment'] = predictions_df['Sentiment'].map({0: 'Negative', 1: 'Neutral', 2: 'Positive'})
42
+
43
+ # Selecting random row from batch data
44
+ random_sample = predictions_df.sample()
45
+ random_headline = random_sample['Headline_string'].iloc[0]
46
+ random_prediction = random_sample['Sentiment'].iloc[0]
47
+ return random_headline, random_prediction
48
+
49
 
50
  description1 = '''
51
  This application recommends news articles depending on the sentiment of the headline.
 
53
  '''
54
 
55
  description2 = '''
56
+ This application will show you a random news headline and our predicted sentiment.
57
+ In order to improve our model, mark the real sentiment of this headline!
 
58
  '''
59
 
60
  suggestion_demo = gr.Interface(
 
65
  description = description1
66
  )
67
 
68
+ manual_label_demo = gr.Blocks() as demo:
69
+ output = [gr.Textbox(label="News Headline"),gr.Textbox(label="Our Predicted Sentiment")],
70
+ generate_btn = gr.Button('Show me a headline!')
71
+ generate_btn.click(fn=manual_label, outputs=output)
72
+
73
+ manual_label_demo1 = gr.Interface(
74
  fn=thanks,
75
  title="Manually Label a News Article",
76
  inputs=[gr.Textbox(label = "Paste in URL of news article here."),