import gradio as gr from datasets import load_dataset, Dataset import pandas as pd from huggingface_hub import create_repo from huggingface_hub import login login(token='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') dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train') predictions_df = pd.DataFrame(dataset) grouped_predictions = predictions_df.groupby(predictions_df.Prediction) positive_preds = grouped_predictions.get_group(2) neutral_preds = grouped_predictions.get_group(1) negative_preds = grouped_predictions.get_group(0) predictions_df['Prediction'] = predictions_df['Prediction'].map({0: 'Negative', 1: 'Neutral', 2: 'Positive'}) def article_selection(sentiment): if sentiment == "Positive": predictions = positive_preds top3 = predictions[0:3] top3_result = top3[['Headline_string','Url']] top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'}) return top3_result elif sentiment == "Negative": predictions = negative_preds top3 = predictions[0:3] top3_result = top3[['Headline_string','Url']] top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'}) return top3_result else: predictions = neutral_preds top3 = predictions[0:3] top3_result = top3[['Headline_string','Url']] top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'}) return top3_result def manual_label(): # Selecting random row from batch data random_sample = predictions_df.sample() #random_sample_ds = Dataset.from_pandas(random_sample) #random_sample.to_csv('/Users/torileatherman/Github/ID2223_scalable_machine_learning/news_articles_sentiment/sample.csv', index=False) #random_sample_ds.push_to_hub('torileatherman/sample', index=False) random_headline = random_sample['Headline_string'].iloc[0] random_prediction = random_sample['Prediction'].iloc[0] return random_headline, random_prediction def thanks(sentiment): labeled_sentiments = [] labeled_sentiments.append(sentiment) #counter = len(labeled_sentiments) #counter = str(counter) #login(token = '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') #create_repo("torileatherman/"+counter+"labeled_data") labeled_sentiments = pd.DataFrame(labeled_sentiments, columns = ['Manual Predictions']) labeled_sentiments.to_csv('/Users/torileatherman/Github/ID2223_scalable_machine_learning/news_articles_sentiment/manual_labels.csv', index=False) #labeled_sentiments = Dataset.from_pandas(labeled_sentiments) #labeled_sentiments.push_to_hub("torileatherman/"+counter+"labeled_data") return f"""Thank you for making our model better!""" description1 = ''' This application recommends news articles depending on the sentiment of the headline. Enter your preference of what type of news articles you would like recommended to you today: Positive, Negative, or Neutral. ''' description2 = ''' This application will show you a random news headline and our predicted sentiment. In order to improve our model, mark the real sentiment of this headline! ''' suggestion_demo = gr.Interface( fn=article_selection, title = 'Recommending News Articles', inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"), outputs = "dataframe", #outputs = [gr.Textbox(label="Recommended News Articles (1/3)"),gr.Textbox(label="Recommended News Articles (2/3)"),gr.Textbox(label="Recommended News Articles (3/3)")], description = description1 ) with gr.Blocks() as manual_label_demo: description = description2 generate_btn = gr.Button('Show me a headline!') generate_btn.click(fn=manual_label, outputs=[gr.Textbox(label="News Headline"),gr.Textbox(label="Our Predicted Sentiment")]) drop_down_label = gr.Dropdown(["Positive","Negative","Neutral"], label="Select the true sentiment of the news article.") submit_btn = gr.Button('Submit your sentiment!') submit_btn.click(fn=thanks, inputs=drop_down_label, outputs=gr.Textbox()) manual_label_demo1 = gr.Interface( fn=thanks, title="Manually Label a News Article", inputs=[gr.Textbox(label = "Paste in URL of news article here."), gr.Dropdown(["Positive","Negative","Neutral"], label="Select the sentiment of the news article.")], outputs = gr.Textbox(label="Output"), description = description2 ) demo = gr.TabbedInterface([suggestion_demo, manual_label_demo], ["Get recommended news articles", "Help improve our model"]) demo.launch()