File size: 12,156 Bytes
aa25f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# --------- Define auxiliary classes ---------
import os
import keras
import tensorflow as tf
@keras.saving.register_keras_serializable(package="1DCNN_Transformer")
class ECA(tf.keras.layers.Layer):
def __init__(self, kernel_size=5, **kwargs):
super().__init__(**kwargs)
self.supports_masking = True
self.kernel_size = kernel_size
self.conv = tf.keras.layers.Conv1D(1, kernel_size=kernel_size, strides=1, padding="same", use_bias=False)
def call(self, inputs, mask=None):
nn = tf.keras.layers.GlobalAveragePooling1D()(inputs, mask=mask)
nn = tf.expand_dims(nn, -1)
nn = self.conv(nn)
nn = tf.squeeze(nn, -1)
nn = tf.nn.sigmoid(nn)
nn = nn[:,None,:]
return inputs * nn
def get_config(self):
base_config = super().get_config()
config = {
# "supports_masking" : keras.saving.serialize_keras_object(self.supports_masking),
"kernel_size" : keras.saving.serialize_keras_object(self.kernel_size)
}
return {**base_config, **config}
@classmethod
def from_config(cls,config):
kernel_size_config = config.pop("kernel_size")
kernel_size = keras.saving.deserialize_keras_object(kernel_size_config)
return cls(kernel_size, **config)
@keras.saving.register_keras_serializable(package="1DCNN_Transformer")
class LateDropout(tf.keras.layers.Layer):
def __init__(self, rate, noise_shape=None, start_step=0, **kwargs):
super().__init__(**kwargs)
self.supports_masking = True
self.rate = rate
self.noise_shape = noise_shape
self.start_step = start_step
self.dropout = tf.keras.layers.Dropout(rate, noise_shape=noise_shape)
def build(self, input_shape):
super().build(input_shape)
agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
self._train_counter = tf.Variable(0, dtype="int64", aggregation=agg, trainable=False)
def call(self, inputs, training=False):
x = tf.cond(self._train_counter < self.start_step, lambda:inputs, lambda:self.dropout(inputs, training=training))
if training:
self._train_counter.assign_add(1)
return x
def get_config(self):
base_config = super().get_config()
config = {
# "supports_masking" : keras.saving.serialize_keras_object(self.supports_masking),
"rate" : keras.saving.serialize_keras_object(self.rate),
"start_step" : keras.saving.serialize_keras_object(self.start_step),
"noise_shape" : keras.saving.serialize_keras_object(self.noise_shape),
}
return {**base_config, **config}
@classmethod
def from_config(cls,config):
rate_config = config.pop("rate")
rate = keras.saving.deserialize_keras_object(rate_config)
start_step_config = config.pop("start_step")
start_step = keras.saving.deserialize_keras_object(start_step_config)
noise_shape_config = config.pop("noise_shape")
noise_shape = keras.saving.deserialize_keras_object(noise_shape_config)
return cls(rate, noise_shape, start_step, **config)
@keras.saving.register_keras_serializable(package="1DCNN_Transformer")
class CausalDWConv1D(tf.keras.layers.Layer):
def __init__(self,
kernel_size=17,
dilation_rate=1,
use_bias=False,
depthwise_initializer='glorot_uniform',
name='', **kwargs):
super().__init__(name=name,**kwargs)
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.use_bias = use_bias
self.depthwise_initializer=depthwise_initializer
self.lname=name
self.causal_pad = tf.keras.layers.ZeroPadding1D((dilation_rate*(kernel_size-1),0),name=name + '_pad')
self.dw_conv = tf.keras.layers.DepthwiseConv1D(
kernel_size,
strides=1,
dilation_rate=dilation_rate,
padding='valid',
use_bias=use_bias,
depthwise_initializer=depthwise_initializer,
name=name + '_dwconv')
self.supports_masking = True
def call(self, inputs):
x = self.causal_pad(inputs)
x = self.dw_conv(x)
return x
def get_config(self):
base_config = super().get_config()
config = {
"kernel_size" : keras.saving.serialize_keras_object(self.kernel_size),
"dilation_rate" : keras.saving.serialize_keras_object(self.dilation_rate),
"use_bias" : keras.saving.serialize_keras_object(self.use_bias),
"depthwise_initializer" : keras.saving.serialize_keras_object(self.depthwise_initializer),
"name" : keras.saving.serialize_keras_object(self.lname),
}
return {**base_config, **config}
@classmethod
def from_config(cls,config):
kernel_size_config = config.pop("kernel_size")
kernel_size = keras.saving.deserialize_keras_object(kernel_size_config)
dilation_rate_config = config.pop("dilation_rate")
dilation_rate = keras.saving.deserialize_keras_object(dilation_rate_config)
bias_config = config.pop("use_bias")
bias = keras.saving.deserialize_keras_object(bias_config)
depthwise_config = config.pop("depthwise_initializer")
depthwise = keras.saving.deserialize_keras_object(depthwise_config)
name_config = config.pop("name")
name = keras.saving.deserialize_keras_object(name_config)
return cls(kernel_size,dilation_rate,bias,depthwise,name, **config)
def Conv1DBlock(channel_size,
kernel_size,
dilation_rate=1,
drop_rate=0.0,
expand_ratio=2,
se_ratio=0.25,
activation='swish',
name=None):
'''
efficient conv1d block, @hoyso48
'''
if name is None:
name = str(tf.keras.backend.get_uid("mbblock"))
# Expansion phase
def apply(inputs):
channels_in = tf.keras.backend.int_shape(inputs)[-1]
channels_expand = channels_in * expand_ratio
skip = inputs
x = tf.keras.layers.Dense(
channels_expand,
use_bias=True,
activation=activation,
name=name + '_expand_conv')(inputs)
# Depthwise Convolution
x = CausalDWConv1D(kernel_size,
dilation_rate=dilation_rate,
use_bias=False,
name=name + '_dwconv')(x)
x = tf.keras.layers.BatchNormalization(momentum=0.95, name=name + '_bn')(x)
x = ECA()(x)
x = tf.keras.layers.Dense(
channel_size,
use_bias=True,
name=name + '_project_conv')(x)
if drop_rate > 0:
x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None,1,1), name=name + '_drop')(x)
if (channels_in == channel_size):
x = tf.keras.layers.add([x, skip], name=name + '_add')
return x
return apply
@keras.saving.register_keras_serializable(package="1DCNN_Transformer")
class MultiHeadSelfAttention(tf.keras.layers.Layer):
def __init__(self, dim=256, num_heads=4, dropout=0, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.scale = self.dim ** -0.5
self.num_heads = num_heads
self.dropout = dropout
self.qkv = tf.keras.layers.Dense(3 * dim, use_bias=False)
self.drop1 = tf.keras.layers.Dropout(dropout)
self.proj = tf.keras.layers.Dense(dim, use_bias=False)
self.supports_masking = True
def call(self, inputs, mask=None):
qkv = self.qkv(inputs)
qkv = tf.keras.layers.Permute((2, 1, 3))(tf.keras.layers.Reshape((-1, self.num_heads, self.dim * 3 // self.num_heads))(qkv))
q, k, v = tf.split(qkv, [self.dim // self.num_heads] * 3, axis=-1)
attn = tf.matmul(q, k, transpose_b=True) * self.scale
if mask is not None:
mask = mask[:, None, None, :]
attn = tf.keras.layers.Softmax(axis=-1)(attn, mask=mask)
attn = self.drop1(attn)
x = attn @ v
x = tf.keras.layers.Reshape((-1, self.dim))(tf.keras.layers.Permute((2, 1, 3))(x))
x = self.proj(x)
return x
def get_config(self):
base_config = super().get_config()
config = {
"dim" : self.dim,
"num_heads" : self.num_heads,
"dropout" : self.dropout,
}
return {**base_config, **config}
@classmethod
def from_config(cls,config):
dim_config = config.pop("dim")
dim = keras.saving.deserialize_keras_object(dim_config)
num_heads_config = config.pop("num_heads")
num_heads = keras.saving.deserialize_keras_object(num_heads_config)
dropout_config = config.pop("dropout")
dropout = keras.saving.deserialize_keras_object(dropout_config)
return cls(dim,num_heads,dropout)
def TransformerBlock(dim=256, num_heads=4, expand=4, attn_dropout=0.2, drop_rate=0.2, activation='swish'):
def apply(inputs):
x = inputs
x = tf.keras.layers.BatchNormalization(momentum=0.95)(x)
x = MultiHeadSelfAttention(dim=dim,num_heads=num_heads,dropout=attn_dropout)(x)
x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None,1,1))(x)
x = tf.keras.layers.Add()([inputs, x])
attn_out = x
x = tf.keras.layers.BatchNormalization(momentum=0.95)(x)
x = tf.keras.layers.Dense(dim*expand, use_bias=False, activation=activation)(x)
x = tf.keras.layers.Dense(dim, use_bias=False)(x)
x = tf.keras.layers.Dropout(drop_rate, noise_shape=(None,1,1))(x)
x = tf.keras.layers.Add()([attn_out, x])
return x
return apply
MAX_LEN = 30 # number of frame
CHANNELS = 258 # number of keypoint value
NUM_CLASSES = 20
PAD = -100
# ----------------------------------------- DEFINE MODEL -----------------------------
def get_model(max_len=MAX_LEN, dropout_step=0, dim=256):
inp = tf.keras.Input((max_len,CHANNELS))
# x = tf.keras.layers.Masking(mask_value=PAD,input_shape=(max_len,CHANNELS))(inp) #we don't need masking layer with inference
x = inp
ksize = 3
x = tf.keras.layers.Permute((2,1))(x)
x = tf.keras.layers.Dense(dim, use_bias=False,name='stem_conv')(x)
x = tf.keras.layers.BatchNormalization(momentum=0.95,name='stem_bn')(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = TransformerBlock(dim,expand=2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = TransformerBlock(dim,expand=2)(x)
if dim == 384: #for the 4x sized model
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = TransformerBlock(dim,expand=2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = Conv1DBlock(dim,ksize,drop_rate=0.2)(x)
x = TransformerBlock(dim,expand=2)(x)
x = tf.keras.layers.Dense(dim*2,activation=None,name='top_conv')(x)
x = tf.keras.layers.GlobalAveragePooling1D()(x)
# x = LateDropout(0.5, start_step=dropout_step)(x)
x = tf.keras.layers.Dense(NUM_CLASSES,name='classifier',activation="softmax")(x)
return tf.keras.Model(inp, x)
def load_model(path='1DCNN_Transformer_L-dim256_train8_1405_checkpoint.weights.h5'):
model = get_model()
module_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(module_dir,path)
model.load_weights(model_path)
return model |