Spaces:
Sleeping
Sleeping
File size: 21,777 Bytes
09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 a8e6640 09c3706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
# Copyright 2024 Anton Obukhov, Bingxin Ke & Kevin Qu, ETH Zurich and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldcomputervision.github.io
# --------------------------------------------------------------------------
import logging
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.utils import BaseOutput, check_min_version
from PIL import Image
from PIL.Image import Resampling
from torch.utils.data import DataLoader, TensorDataset
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.27.0.dev0")
class MarigoldIIDLightingOutput(BaseOutput):
"""
Output class for Marigold-IID-Lighting pipeline.
Args:
albedo (`np.ndarray`):
Predicted albedo map with the shape of [3, H, W] values in the range of [0, 1].
albedo_colored (`PIL.Image.Image`):
Colorized albedo map with the shape of [H, W, 3].
shading (`np.ndarray`):
Predicted diffuse shading map with the shape of [3, H, W] values in the range of [0, 1].
shading_colored (`PIL.Image.Image`):
Colorized diffuse shading map with the shape of [H, W, 3].
residual (`np.ndarray`):
Predicted non-diffuse residual map with the shape of [3, H, W] values in the range of [0, 1].
residual_colored (`PIL.Image.Image`):
Colorized non-diffuse residual map with the shape of [H, W, 3].
"""
albedo: np.ndarray
albedo_colored: Image.Image
shading: np.ndarray
shading_colored: Image.Image
residual: np.ndarray
residual_colored: Image.Image
class MarigoldIIDLightingPipeline(DiffusionPipeline):
"""
Pipeline for Intrinsic Image Decomposition (Albedo, diffuse shading and non-diffuse residual) using Marigold: https://marigoldcomputervision.github.io.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
unet (`UNet2DConditionModel`):
Conditional U-Net to denoise the normals latent, conditioned on image latent.
vae (`AutoencoderKL`):
Variational Auto-Encoder (VAE) Model to encode and decode images and normals maps
to and from latent representations.
scheduler (`DDIMScheduler`):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
text_encoder (`CLIPTextModel`):
Text-encoder, for empty text embedding.
tokenizer (`CLIPTokenizer`):
CLIP tokenizer.
"""
latent_scale_factor = 0.18215
def __init__(
self,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
scheduler: DDIMScheduler,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
self.empty_text_embed = None
self.n_targets = 3 # Albedo, shading, residual
@torch.no_grad()
def __call__(
self,
input_image: Image,
denoising_steps: int = 4,
ensemble_size: int = 10,
processing_res: int = 768,
match_input_res: bool = True,
resample_method: str = "bilinear",
batch_size: int = 0,
save_memory: bool = False,
seed: Union[int, None] = None,
color_map: str = "Spectral", # TODO change colorization api based on modality
show_progress_bar: bool = True,
**kwargs,
) -> MarigoldIIDLightingOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (`Image`):
Input RGB (or gray-scale) image.
denoising_steps (`int`, *optional*, defaults to `10`):
Number of diffusion denoising steps (DDIM) during inference.
ensemble_size (`int`, *optional*, defaults to `10`):
Number of predictions to be ensembled.
processing_res (`int`, *optional*, defaults to `768`):
Maximum resolution of processing.
If set to 0: will not resize at all.
match_input_res (`bool`, *optional*, defaults to `True`):
Resize normals prediction to match input resolution.
Only valid if `limit_input_res` is not None.
resample_method: (`str`, *optional*, defaults to `bilinear`):
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
save_memory (`bool`, defaults to `False`):
Extra steps to save memory at the cost of perforance.
seed (`int`, *optional*, defaults to `None`)
Reproducibility seed.
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized normals map generation):
Colormap used to colorize the normals map.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
Returns:
`MarigoldIIDLightingOutput`: Output class for Marigold monocular intrinsic image decomposition (lighting) prediction pipeline, including:
- **albedo** (`np.ndarray`) Predicted albedo map with the shape of [3, H, W] values in the range of [0, 1]
- **albedo_colored** (`PIL.Image.Image`) Colorized albedo map with the shape of [3, H, W] values in the range of [0, 1]
- **material** (`np.ndarray`) Predicted material map with the shape of [3, H, W] and values in [0, 1]
- **material_colored** (`PIL.Image.Image`) Colorized material map with the shape of [3, H, W] and values in [0, 1]
"""
if not match_input_res:
assert processing_res is not None
assert processing_res >= 0
assert denoising_steps >= 1
assert ensemble_size >= 1
# Check if denoising step is reasonable
self.check_inference_step(denoising_steps)
resample_method: Resampling = self.get_pil_resample_method(resample_method)
W, H = input_image.size
if processing_res > 0:
input_image = self.resize_max_res(
input_image, max_edge_resolution=processing_res, resample_method=resample_method,
)
input_image = input_image.convert("RGB")
image = np.asarray(input_image)
rgb = np.transpose(image, (2, 0, 1)) # [H, W, rgb] -> [rgb, H, W]
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm.to(self.device)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0 # TODO remove this
def ensemble(
targets: torch.Tensor, return_uncertainty: bool = False, reduction = "median",
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
uncertainty = None
if reduction == "mean":
prediction = torch.mean(targets, dim=0, keepdim=True)
if return_uncertainty:
uncertainty = torch.std(targets, dim=0, keepdim=True)
elif reduction == "median":
prediction = torch.median(targets, dim=0, keepdim=True).values
if return_uncertainty:
uncertainty = torch.median(
torch.abs(targets - prediction), dim=0, keepdim=True
).values
else:
raise ValueError(f"Unrecognized reduction method: {reduction}.")
return prediction, uncertainty
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
single_rgb_dataset = TensorDataset(duplicated_rgb)
if batch_size <= 0:
batch_size = self.find_batch_size(
ensemble_size=ensemble_size,
input_res=max(rgb_norm.shape[1:]),
dtype=self.dtype,
)
single_rgb_loader = DataLoader(
single_rgb_dataset, batch_size=batch_size, shuffle=False
)
target_pred_ls = []
iterable = single_rgb_loader
if show_progress_bar:
iterable = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
for batch in iterable:
(batched_img,) = batch
target_pred = self.single_infer(
rgb_in=batched_img,
num_inference_steps=denoising_steps,
seed=seed,
show_pbar=show_progress_bar,
)
target_pred = target_pred.detach()
if save_memory:
target_pred = target_pred.cpu()
target_pred_ls.append(target_pred.detach())
target_preds = torch.concat(target_pred_ls, dim=0)
pred_uncert = None
if save_memory:
torch.cuda.empty_cache()
if ensemble_size > 1:
final_pred, pred_uncert = ensemble(
target_preds,
reduction = "median",
return_uncertainty=False
)
else:
final_pred = target_preds
pred_uncert = None
if match_input_res:
final_pred = torch.nn.functional.interpolate(
final_pred, (H, W), mode="bilinear" # TODO: parameterize this method
) # [1,3,H,W]
if pred_uncert is not None:
pred_uncert = torch.nn.functional.interpolate(
pred_uncert.unsqueeze(1), (H, W), mode="bilinear"
).squeeze(
1
) # [1,H,W]
# Convert to numpy
final_pred = final_pred.squeeze()
final_pred = final_pred.cpu().numpy()
albedo = final_pred[0:3, :, :]
shading = final_pred[3:6, :, :]
residual = final_pred[6:, :, :]
albedo_colored = (albedo + 1.0) * 0.5 # [-1,1] -> [0,1]
albedo_colored = albedo_colored ** (1/2.2) # from linear to sRGB (to be consistent with IID-Appearance model)
albedo_colored = (albedo_colored * 255).astype(np.uint8)
albedo_colored = self.chw2hwc(albedo_colored)
albedo_colored_img = Image.fromarray(albedo_colored)
shading_colored = (shading + 1.0) * 0.5
shading_colored = shading_colored / shading_colored.max() # rescale for better visualization
shading_colored = (shading_colored * 255).astype(np.uint8)
shading_colored = self.chw2hwc(shading_colored)
shading_colored_img = Image.fromarray(shading_colored)
residual_colored = (residual + 1.0) * 0.5
residual_colored = residual_colored / residual_colored.max() # rescale for better visualization
residual_colored = (residual_colored * 255).astype(np.uint8)
residual_colored = self.chw2hwc(residual_colored)
residual_colored_img = Image.fromarray(residual_colored)
out = MarigoldIIDLightingOutput(
albedo=albedo,
albedo_colored=albedo_colored_img,
shading=shading,
shading_colored=shading_colored_img,
residual=residual,
residual_colored=residual_colored_img
)
return out
def check_inference_step(self, n_step: int):
"""
Check if denoising step is reasonable
Args:
n_step (`int`): denoising steps
"""
assert n_step >= 1
if isinstance(self.scheduler, DDIMScheduler):
pass
else:
raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")
def encode_empty_text(self):
"""
Encode text embedding for empty prompt.
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
@torch.no_grad()
def single_infer(
self,
rgb_in: torch.Tensor,
num_inference_steps: int,
seed: Union[int, None],
show_pbar: bool,
) -> torch.Tensor:
"""
Perform an individual iid prediction without ensembling.
"""
device = rgb_in.device
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps # [T]
# Encode image
rgb_latent = self.encode_rgb(rgb_in)
target_latent_shape = list(rgb_latent.shape)
target_latent_shape[1] *= (
3 # TODO: no hardcoding # self.n_targets # (B, 4*n_targets, h, w)
)
# Initialize prediction latent with noise
if seed is None:
rand_num_generator = None
else:
rand_num_generator = torch.Generator(device=device)
rand_num_generator.manual_seed(seed)
target_latents = torch.randn(
target_latent_shape,
device=device,
dtype=self.dtype,
generator=rand_num_generator,
) # [B, 4, h, w]
# Batched empty text embedding
if self.empty_text_embed is None:
self.encode_empty_text()
batch_empty_text_embed = self.empty_text_embed.repeat(
(rgb_latent.shape[0], 1, 1)
) # [B, 2, 1024]
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
unet_input = torch.cat(
[rgb_latent, target_latents], dim=1
) # this order is important
# predict the noise residual
noise_pred = self.unet(
unet_input, t, encoder_hidden_states=batch_empty_text_embed
).sample # [B, 4, h, w]
# compute the previous noisy sample x_t -> x_t-1
target_latents = self.scheduler.step(
noise_pred, t, target_latents, generator=rand_num_generator
).prev_sample
# torch.cuda.empty_cache() # TODO is it really needed here, even if memory saving?
targets = self.decode_targets(target_latents) # [B, 3, H, W]
targets = torch.clip(targets, -1.0, 1.0)
return targets
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.latent_scale_factor
return rgb_latent
def decode_targets(self, target_latents: torch.Tensor) -> torch.Tensor:
"""
Decode target latent into target map.
Args:
target_latents (`torch.Tensor`):
Target latent to be decoded.
Returns:
`torch.Tensor`: Decoded target map.
"""
assert target_latents.shape[1] == 12 # self.n_targets * 4
# scale latent
target_latents = target_latents / self.latent_scale_factor
# decode
targets = []
for i in range(self.n_targets):
latent = target_latents[:, i * 4 : (i + 1) * 4, :, :]
z = self.vae.post_quant_conv(latent)
stacked = self.vae.decoder(z)
targets.append(stacked)
return torch.cat(targets, dim=1)
@staticmethod
def get_pil_resample_method(method_str: str) -> Resampling:
resample_method_dic = {
"bilinear": Resampling.BILINEAR,
"bicubic": Resampling.BICUBIC,
"nearest": Resampling.NEAREST,
}
resample_method = resample_method_dic.get(method_str, None)
if resample_method is None:
raise ValueError(f"Unknown resampling method: {resample_method}")
else:
return resample_method
@staticmethod
def resize_max_res(img: Image.Image, max_edge_resolution: int, resample_method=Resampling.BILINEAR) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio.
"""
original_width, original_height = img.size
downscale_factor = min(max_edge_resolution / original_width, max_edge_resolution / original_height)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
resized_img = img.resize((new_width, new_height), resample=resample_method)
return resized_img
@staticmethod
def chw2hwc(chw):
assert 3 == len(chw.shape)
if isinstance(chw, torch.Tensor):
hwc = torch.permute(chw, (1, 2, 0))
elif isinstance(chw, np.ndarray):
hwc = np.moveaxis(chw, 0, -1)
return hwc
@staticmethod
def find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int:
"""
Automatically search for suitable operating batch size.
Args:
ensemble_size (`int`):
Number of predictions to be ensembled.
input_res (`int`):
Operating resolution of the input image.
Returns:
`int`: Operating batch size.
"""
# Search table for suggested max. inference batch size
bs_search_table = [
# tested on A100-PCIE-80GB
{"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32},
{"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32},
# tested on A100-PCIE-40GB
{"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32},
{"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32},
{"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16},
{"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16},
# tested on RTX3090, RTX4090
{"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32},
{"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32},
{"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32},
{"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16},
{"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16},
{"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16},
# tested on GTX1080Ti
{"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32},
{"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32},
{"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16},
{"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16},
{"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16},
]
if not torch.cuda.is_available():
return 1
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3
filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype]
for settings in sorted(
filtered_bs_search_table,
key=lambda k: (k["res"], -k["total_vram"]),
):
if input_res <= settings["res"] and total_vram >= settings["total_vram"]:
bs = settings["bs"]
if bs > ensemble_size:
bs = ensemble_size
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size:
bs = math.ceil(ensemble_size / 2)
return bs
return 1
|