File size: 10,522 Bytes
9805f49
5d8b198
 
 
9805f49
5d8b198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6abba
 
5d8b198
 
54ceda9
acbf079
 
8c941f5
acbf079
 
 
 
 
 
8c941f5
acbf079
 
8c941f5
acbf079
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import gradio as gr
import pandas as pd
import backtrader as bt
import requests

class TrendFollowingStrategy(bt.Strategy):
    params = (('ma_period', 15),)

    def __init__(self):
        self.ma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.ma_period)
        self.crossover = bt.ind.CrossOver(self.data.close, self.ma)
        self.last_signal = None
        self.last_signal_timeframe = self.data._timeframe

        # Additional tracking
        self.trade_count = 0
        self.win_count = 0
        self.loss_count = 0

    def next(self):
        # Check if we are in the market
        if not self.position:
            # We are not in the market, look for a signal to enter
            if self.crossover > 0:
                self.buy()  # Execute a buy order
                self.last_signal = 'CALL'
            elif self.crossover < 0:
                self.sell()  # Execute a sell order
                self.last_signal = 'PUT'
        else:
            # We are in the market, look for a signal to close
            if self.position.size > 0 and self.crossover < 0:
                # We are long and get a sell signal
                self.close()  # Close the long position
            elif self.position.size < 0 and self.crossover > 0:
                # We are short and get a buy signal
                self.close()  # Close the short position


    def notify_trade(self, trade):
        if trade.isclosed:
            outcome = 'win' if trade.pnl > 0 else 'loss'
            self.log_trade(self.last_signal, outcome)

    def log_trade(self, trade_type, outcome):
        """
        Log the details of each trade.
        """
        self.trade_count += 1
        if outcome == 'win':
            self.win_count += 1
        elif outcome == 'loss':
            self.loss_count += 1
        print(f"Trade {self.trade_count}: {trade_type} - {outcome}")

def fetch_forex_intraday(api_key, from_symbol, to_symbol, interval, outputsize='compact'):
    url = f'https://www.alphavantage.co/query?function=FX_INTRADAY&from_symbol={from_symbol}&to_symbol={to_symbol}&interval={interval}&apikey={api_key}&outputsize={outputsize}'
    response = requests.get(url)
    data = response.json()

    # Extracting the time series data from the JSON object
    time_series_key = 'Time Series FX (' + interval + ')'
    forex_data = pd.DataFrame(data[time_series_key]).T
    forex_data.columns = ['Open', 'High', 'Low', 'Close']

    # Convert index to datetime and sort data
    forex_data.index = pd.to_datetime(forex_data.index)
    forex_data.sort_index(inplace=True)

    # Convert columns to numeric
    forex_data = forex_data.apply(pd.to_numeric)

    return forex_data

def analyze_sentiment(json_response, target_ticker):
    """
    Analyze the sentiment data for a specific ticker.
    
    :param json_response: The JSON response from the API.
    :param target_ticker: The ticker symbol to analyze (e.g., base_ticker).
    :return: A string describing the overall sentiment for the target ticker.
    """
    if not json_response or "feed" not in json_response:
        return "No data available for analysis"

    sentiment_label = "Neutral"  # Default sentiment
    highest_relevance = 0  # Track the highest relevance score

    # Loop through each news item in the feed
    for item in json_response.get("feed", []):
        # Check each ticker sentiment in the item
        for ticker_data in item.get("ticker_sentiment", []):
            if ticker_data["ticker"] == target_ticker:
                relevance_score = float(ticker_data.get("relevance_score", 0))
                sentiment_score = float(ticker_data.get("ticker_sentiment_score", 0))

                # Determine the sentiment label based on the score
                if relevance_score > highest_relevance:
                    highest_relevance = relevance_score
                    if sentiment_score <= -0.35:
                        sentiment_label = "Bearish"
                    elif -0.35 < sentiment_score <= -0.15:
                        sentiment_label = "Somewhat-Bearish"
                    elif -0.15 < sentiment_score < 0.15:
                        sentiment_label = "Neutral"
                    elif 0.15 <= sentiment_score < 0.35:
                        sentiment_label = "Somewhat_Bullish"
                    elif sentiment_score >= 0.35:
                        sentiment_label = "Bullish"

    return sentiment_label

def make_trade_decision(base_currency, quote_currency, quote_sentiment, base_sentiment):
    """
    Make a trade decision based on sentiment analysis and forex signal parameters.
    
    :param quote_sentiment: Sentiment analysis result for {base_currency}.
    :param base_sentiment: Sentiment analysis result for {quote_currency}.
    :param entry: Entry price for the trade.
    :param stop_loss: Stop loss price.
    :param take_profit: Take profit price.
    :return: A decision to make the trade or not, along with sentiment analysis results.
    """
    trade_decision = "No trade"
    decision_reason = f"{base_currency} Sentiment: {quote_sentiment}, {quote_currency} Sentiment: {base_sentiment}"

    # Adjust the logic to account for somewhat bullish/bearish sentiments
    bullish_sentiments = ["Bullish", "Somewhat_Bullish"]
    bearish_sentiments = ["Bearish", "Somewhat-Bearish"]

    if quote_sentiment in bullish_sentiments and base_sentiment not in bullish_sentiments:
        trade_decision = f"Sell {base_currency}/{quote_currency}"
    elif base_sentiment in bullish_sentiments and quote_sentiment not in bullish_sentiments:
        trade_decision = f"Buy {base_currency}/{quote_currency}"
    elif quote_sentiment in bearish_sentiments and base_sentiment not in bearish_sentiments:
        trade_decision = f"Buy {base_currency}/{quote_currency}"
    elif base_sentiment in bearish_sentiments and quote_sentiment not in bearish_sentiments:
        trade_decision = f"Sell {base_currency}/{quote_currency}"


    return trade_decision, decision_reason

def fetch_sentiment_data(api_endpoint, ticker, api_key, sort='LATEST', limit=50):
    # Prepare the query parameters
    params = {
        'function': 'NEWS_SENTIMENT',
        'tickers': ticker,
        'apikey': api_key,
        'sort': sort,
        'limit': limit
    }
    
    # Make the API request
    response = requests.get(api_endpoint, params=params)

    # Check if the request was successful
    if response.status_code == 200:
        # Return the JSON response
        return response.json()
    else:
        # Return an error message
        return f"Error fetching data: {response.status_code}"
    
def load_data(api_key, from_symbol, to_symbol, interval):
    # Fetch data using the Alpha Vantage API
    forex_data = fetch_forex_intraday(api_key, from_symbol, to_symbol, interval)

    # Convert the pandas dataframe to a Backtrader data feed
    data = bt.feeds.PandasData(dataname=forex_data)
    return data 

def should_trade(strategy, api_endpoint, api_key, base_currency, quote_currency):
    consistent_periods = 3
    if len(strategy) < consistent_periods:
        return False, None, None, "Insufficient data"

    if strategy.last_signal_timeframe in bt.TimeFrame.Names:
        timeframe = bt.TimeFrame.getname(strategy.last_signal_timeframe)
    else:
        timeframe = "Unknown Timeframe"

    base_ticker = f"FOREX:{base_currency}"
    quote_ticker = f"FOREX:{quote_currency}"

    # Fetch and analyze sentiment data
    json_response = fetch_sentiment_data(api_endpoint, f"{base_ticker}", api_key)
    print(fetch_sentiment_data(api_endpoint, f"{quote_currency}", api_key))
    print(json_response)
    base_sentiment = analyze_sentiment(json_response, base_ticker)
    quote_sentiment = analyze_sentiment(json_response, quote_currency)

    # Make a trade decision based on technical and sentiment analysis
    trade_decision, decision_reason = make_trade_decision(base_currency, quote_currency, quote_sentiment, base_sentiment)

    signal = strategy.crossover[0]
    if all(strategy.crossover[-i] == signal for i in range(1, consistent_periods + 1)):
        #timeframe = bt.TimeFrame.getname(strategy.last_signal_timeframe) if strategy.last_signal_timeframe else "Unknown Timeframe"
        return True, trade_decision, timeframe, decision_reason
    return False, None, None, "Not enough consistent signals or conflicting sentiment " +decision_reason+"."

# Define a function to run the backtest and provide trading signals
def run_backtest(api_key, from_symbol, to_symbol, interval):
    # Set up Cerebro engine
    cerebro = bt.Cerebro()
    cerebro.addstrategy(TrendFollowingStrategy)

    # Add data feed to Cerebro
    data = load_data(api_key, from_symbol, to_symbol, interval)
    cerebro.adddata(data)

    # Set initial cash (optional)
    cerebro.broker.set_cash(10000)

    # Run the backtest
    strategy_instance = cerebro.run()[0]
    api_endpoint = "https://www.alphavantage.co/query"  # Replace with actual endpoint

    # Calculate win and loss percentages
    total_trades = strategy_instance.trade_count
    total_wins = strategy_instance.win_count
    total_losses = strategy_instance.loss_count

    win_percentage = (total_wins / total_trades) * 100
    loss_percentage = (total_losses / total_trades) * 100

    # Determine if it's a buy or sell based on percentages
    if win_percentage > loss_percentage:
        signal = "Buy"
        color = "green"
    else:
        signal = "Sell"
        color = "red"

    return f"Signal: <span style='color: {color}'>{signal}</span>"


# Define a list of popular currency pairs for the dropdowns
from_currency_choices = ['EUR', 'GBP', 'USD', 'AUD', 'JPY']
to_currency_choices = ['USD', 'JPY', 'GBP', 'AUD', 'CAD']

# Placeholder link for API key
from gradio import inputs  # Import the missing 'inputs' attribute from the 'gradio' module

api_key_link = "https://www.alphavantage.co/support/#api-key"


# Create a Gradio interface
gr.Interface(
    fn=run_backtest, 
    inputs=[
        gr.inputs.Textbox(label="API Key", placeholder="Enter your API key"),
        gr.inputs.Dropdown(label="From Currency", choices=['EUR', 'GBP', 'USD', 'AUD', 'JPY']),
        gr.inputs.Dropdown(label="To Currency", choices=['USD', 'JPY', 'GBP', 'AUD', 'CAD']),
        gr.inputs.Radio(label="Interval", choices=["1min", "5min", "15min", "30min", "60min"])
    ],
    outputs="html", 
    live=True,
    title="Trading Signal",
    description="Run Backtest and Get Trading Signal"
).launch()