File size: 14,003 Bytes
9805f49
5d8b198
 
 
9805f49
1b4fca8
 
 
 
 
5d8b198
 
 
 
 
 
 
 
 
 
 
 
 
1b4fca8
5d8b198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4fca8
 
 
 
 
 
5d8b198
 
1b4fca8
 
 
 
 
 
 
5d8b198
61a4161
 
 
 
5d8b198
61a4161
 
 
 
5d8b198
61a4161
 
 
5d8b198
61a4161
 
5d8b198
61a4161
 
 
 
5d8b198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4fca8
 
5d8b198
 
 
 
 
 
 
 
 
 
 
 
1b4fca8
 
5d8b198
4fb992f
 
 
 
 
 
 
 
 
 
 
 
5d8b198
61a4161
 
 
5d8b198
61a4161
 
 
e66a30a
61a4161
 
1b4fca8
 
61a4161
 
 
1b4fca8
61a4161
 
 
 
e66a30a
61a4161
 
1b4fca8
61a4161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4fca8
61a4161
 
 
5d8b198
 
 
8a96a0e
 
5d8b198
 
 
 
1b4fca8
acb5465
 
1b4fca8
 
acbf079
8c941f5
1b4fca8
8c941f5
acbf079
1b4fca8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import gradio as gr
import pandas as pd
import backtrader as bt
import requests


# Define the Markdown-formatted instructions
with open("instructions.md", "r") as md_file:
    instructions = md_file.read()
    
class TrendFollowingStrategy(bt.Strategy):
    params = (('ma_period', 15),)

    def __init__(self):
        self.ma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.ma_period)
        self.crossover = bt.ind.CrossOver(self.data.close, self.ma)
        self.last_signal = None
        self.last_signal_timeframe = self.data._timeframe

        # Additional tracking
        self.trade_count = 0
        self.win_count = 0
        self.loss_count = 0
        self.trade_log = []  # Store trade details as a list of dictionaries

    def next(self):
        # Check if we are in the market
        if not self.position:
            # We are not in the market, look for a signal to enter
            if self.crossover > 0:
                self.buy()  # Execute a buy order
                self.last_signal = 'CALL'
            elif self.crossover < 0:
                self.sell()  # Execute a sell order
                self.last_signal = 'PUT'
        else:
            # We are in the market, look for a signal to close
            if self.position.size > 0 and self.crossover < 0:
                # We are long and get a sell signal
                self.close()  # Close the long position
            elif self.position.size < 0 and self.crossover > 0:
                # We are short and get a buy signal
                self.close()  # Close the short position

    def notify_trade(self, trade):
        if trade.isclosed:
            outcome = 'win' if trade.pnl > 0 else 'loss'
            self.log_trade(self.last_signal, outcome)

    def log_trade(self, trade_type, outcome):
        """
        Log the details of each trade.
        """
        self.trade_count += 1
        if outcome == 'win':
            self.win_count += 1
        elif outcome == 'loss':
            self.loss_count += 1
        trade_details = {
            'trade_num': self.trade_count,
            'trade_type': trade_type,
            'outcome': outcome
        }
        self.trade_log.append(trade_details)
        print(f"Trade {self.trade_count}: {trade_type} - {outcome}")

    def get_trade_log(self):
        """
        Get the trade log as a list of dictionaries.
        """
        return self.trade_log


def fetch_forex_intraday(api_key, from_symbol, to_symbol, interval, outputsize='compact'):
    try:
        url = f'https://www.alphavantage.co/query?function=FX_INTRADAY&from_symbol={from_symbol}&to_symbol={to_symbol}&interval={interval}&apikey={api_key}&outputsize={outputsize}'
        response = requests.get(url)
        data = response.json()

        # Extracting the time series data from the JSON object
        time_series_key = 'Time Series FX (' + str(interval) + ')'
        forex_data = pd.DataFrame(data[time_series_key]).T
        forex_data.columns = ['Open', 'High', 'Low', 'Close']

        # Convert index to datetime and sort data
        forex_data.index = pd.to_datetime(forex_data.index)
        forex_data.sort_index(inplace=True)

        # Convert columns to numeric
        forex_data = forex_data.apply(pd.to_numeric)

        return forex_data
    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return None

def analyze_sentiment(json_response, target_ticker):
    """
    Analyze the sentiment data for a specific ticker.
    
    :param json_response: The JSON response from the API.
    :param target_ticker: The ticker symbol to analyze (e.g., base_ticker).
    :return: A string describing the overall sentiment for the target ticker.
    """
    if not json_response or "feed" not in json_response:
        return "No data available for analysis"

    sentiment_label = "Neutral"  # Default sentiment
    highest_relevance = 0  # Track the highest relevance score

    # Loop through each news item in the feed
    for item in json_response.get("feed", []):
        # Check each ticker sentiment in the item
        for ticker_data in item.get("ticker_sentiment", []):
            if ticker_data["ticker"] == target_ticker:
                relevance_score = float(ticker_data.get("relevance_score", 0))
                sentiment_score = float(ticker_data.get("ticker_sentiment_score", 0))

                # Determine the sentiment label based on the score
                if relevance_score > highest_relevance:
                    highest_relevance = relevance_score
                    if sentiment_score <= -0.35:
                        sentiment_label = "Bearish"
                    elif -0.35 < sentiment_score <= -0.15:
                        sentiment_label = "Somewhat-Bearish"
                    elif -0.15 < sentiment_score < 0.15:
                        sentiment_label = "Neutral"
                    elif 0.15 <= sentiment_score < 0.35:
                        sentiment_label = "Somewhat_Bullish"
                    elif sentiment_score >= 0.35:
                        sentiment_label = "Bullish"

    return sentiment_label

def make_trade_decision(base_currency, quote_currency, quote_sentiment, base_sentiment):
    """
    Make a trade decision based on sentiment analysis and forex signal parameters.
    
    :param quote_sentiment: Sentiment analysis result for {base_currency}.
    :param base_sentiment: Sentiment analysis result for {quote_currency}.
    :param entry: Entry price for the trade.
    :param stop_loss: Stop loss price.
    :param take_profit: Take profit price.
    :return: A decision to make the trade or not, along with sentiment analysis results.
    """
    trade_decision = "No trade"
    decision_reason = f"{base_currency} Sentiment: {quote_sentiment}, {quote_currency} Sentiment: {base_sentiment}"

    # Adjust the logic to account for somewhat bullish/bearish sentiments
    bullish_sentiments = ["Bullish", "Somewhat_Bullish"]
    bearish_sentiments = ["Bearish", "Somewhat-Bearish"]

    if quote_sentiment in bullish_sentiments and base_sentiment not in bullish_sentiments:
        trade_decision = f"Sell {base_currency}/{quote_currency}"
    elif base_sentiment in bullish_sentiments and quote_sentiment not in bullish_sentiments:
        trade_decision = f"Buy {base_currency}/{quote_currency}"
    elif quote_sentiment in bearish_sentiments and base_sentiment not in bearish_sentiments:
        trade_decision = f"Buy {base_currency}/{quote_currency}"
    elif base_sentiment in bearish_sentiments and quote_sentiment not in bearish_sentiments:
        trade_decision = f"Sell {base_currency}/{quote_currency}"


    return trade_decision, decision_reason

def fetch_sentiment_data(api_endpoint, ticker, api_key, sort='LATEST', limit=50):
    # Prepare the query parameters
    params = {
        'function': 'NEWS_SENTIMENT',
        'tickers': ticker,
        'apikey': api_key,
        'sort': sort,
        'limit': limit
    }
    
    # Make the API request
    response = requests.get(api_endpoint, params=params)

    # Check if the request was successful
    if response.status_code == 200:
        # Return the JSON response
        return response.json()
    else:
        # Return an error message
        return f"Error fetching data: {response.status_code}"
    
def load_data(api_key, from_symbol, to_symbol, interval):
    # Fetch data using the Alpha Vantage API
    forex_data = fetch_forex_intraday(api_key, from_symbol, to_symbol, interval)

    # Convert the pandas dataframe to a Backtrader data feed
    data = bt.feeds.PandasData(dataname=forex_data)
    return data 

def should_trade(strategy, api_endpoint, api_key, base_currency, quote_currency):
    consistent_periods = 3
    if len(strategy) < consistent_periods:
        return False, None, None, "Insufficient data"

    if strategy.last_signal_timeframe in bt.TimeFrame.Names:
        timeframe = bt.TimeFrame.getname(strategy.last_signal_timeframe)
    else:
        timeframe = "Unknown Timeframe"

    base_ticker = f"FOREX:{base_currency}"
    quote_ticker = f"FOREX:{quote_currency}"

    # Fetch and analyze sentiment data
    json_response = fetch_sentiment_data(api_endpoint, f"{base_ticker}", api_key)
    #print(fetch_sentiment_data(api_endpoint, f"{quote_currency}", api_key))
    #print(json_response)
    base_sentiment = analyze_sentiment(json_response, base_ticker)
    quote_sentiment = analyze_sentiment(json_response, quote_currency)

    # Make a trade decision based on technical and sentiment analysis
    trade_decision, decision_reason = make_trade_decision(base_currency, quote_currency, quote_sentiment, base_sentiment)

    signal = strategy.crossover[0]
    if all(strategy.crossover[-i] == signal for i in range(1, consistent_periods + 1)):
        #timeframe = bt.TimeFrame.getname(strategy.last_signal_timeframe) if strategy.last_signal_timeframe else "Unknown Timeframe"
        return True, trade_decision, timeframe, decision_reason
    return False, None, None, "Not enough consistent signals or conflicting sentiment " +decision_reason+"."

import backtrader as bt

def run_backtest(api_key, from_symbol, to_symbol, interval):
    """
    Run a backtest using the specified API key, currency symbols, and interval.

    Parameters:
    - api_key (str): The API key for accessing the data.
    - from_symbol (str): The base currency symbol.
    - to_symbol (str): The quote currency symbol.
    - interval (str): The time interval for the data.

    Returns:
    - html_message (str): An HTML message containing the calculated statistics, trade log, and trade decision information.
    """
    # Set up Cerebro engine
    try:
        cerebro = bt.Cerebro()
        cerebro.addstrategy(TrendFollowingStrategy)

        # Add data feed to Cerebro
        data = load_data(api_key, from_symbol, to_symbol, interval)
        cerebro.adddata(data)

        # Set initial cash (optional)
        cerebro.broker.set_cash(10000)


        # Run the backtest
        strategy_instance = cerebro.run()[0]
        api_endpoint = "https://www.alphavantage.co/query"  # Replace with actual endpoint

        # Calculate win and loss percentages
        total_trades = strategy_instance.trade_count
        total_wins = strategy_instance.win_count
        total_losses = strategy_instance.loss_count

        win_percentage = (total_wins / total_trades) * 100
        loss_percentage = (total_losses / total_trades) * 100

        # Get trade log from the strategy
        trade_log = strategy_instance.get_trade_log()

        # Iterate through the trade log and count valid trades
        valid_buy_trades = 0
        valid_sell_trades = 0

        # Initialize a variable to store the last trade line
        last_trade_line = ""

        # Iterate through the trade log and count valid trades
        for trade in trade_log:
            if trade['trade_type'] == 'CALL':
                valid_buy_trades += 1
            elif trade['trade_type'] == 'PUT':
                valid_sell_trades += 1

            # Store the last trade line
            last_trade_line = f"Trade {trade['trade_num']}: {trade['trade_type']} - {trade['outcome']}"

        for trade in trade_log:
            if trade['trade_type'] == 'CALL':
                valid_buy_trades += 1
            elif trade['trade_type'] == 'PUT':
                valid_sell_trades += 1

        # Determine if the backtest agrees (valid Buy trades > valid Sell trades)
        if win_percentage > loss_percentage:
            signal = last_trade_line
            color = "green"
        else:
            signal = last_trade_line
            color = "red"


        # Get trade decision information
        trade_decision, trade_type, trade_timeframe, reason = should_trade(strategy_instance, api_endpoint, api_key, from_symbol, to_symbol)


        # Create an HTML message with the calculated statistics, trade log, and trade decision information
        html_message = f"""
        <p><strong>Strategy Performance Summary:</strong></p>
        <p>On the {interval} timeframe</p>
        <p>*****************************</p>
        <p>Total Trades: {total_trades}</p>
        <p>Total Wins: {total_wins} ({win_percentage:.2f}%)</p>
        <p>Total Losses: {total_losses} ({loss_percentage:.2f}%)</p>
        <p>Signal: <span style='color: {color}'>{signal}</span></p>
        <p><strong>Trade Log:</strong></p>
        <ul>
        """
        
        for trade in trade_log:
            html_message += f"<li>Trade {trade['trade_num']}: {trade['trade_type']} - {trade['outcome']}</li>"


        html_message += "</ul>"

        # Include trade decision information
        html_message += f"""
        <p><strong>Trade Decision:</strong></p>
        <p>Trade Type: {trade_type}</p>
        <p>Timeframe: {trade_timeframe}</p>
        <p>Reason: {reason}</p>
        """

        return html_message
    except Exception as e:
        return f"Waiting for data"


# Define a list of popular currency pairs for the dropdowns
from_currency_choices = ['EUR', 'GBP', 'USD', 'AUD', 'JPY', 'CAD', 'CHF', 'NZD']
to_currency_choices = ['USD', 'JPY', 'GBP', 'AUD', 'CAD', 'CHF', 'NZD', 'EUR']

# Placeholder link for API key
api_key_link = "https://www.alphavantage.co/support/#api-key"

api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key")
from_currency_input = gr.Dropdown(label="From Currency", choices= ['EUR', 'GBP', 'USD', 'AUD', 'JPY', 'CAD', 'CHF', 'NZD'])
to_currency_input = gr.Dropdown(label="To Currency", choices=['USD', 'JPY', 'GBP', 'AUD', 'CAD', 'CHF', 'NZD', 'EUR'])
interval_input = gr.Radio(label="Interval", choices=["1min", "5min", "15min", "30min", "60min"])

gr.Interface(
    fn=run_backtest, 
    inputs=[api_key_input, from_currency_input, to_currency_input, interval_input],
    outputs="html", 
    live=True,
    title="Forex Trend Trading Signals",
    description=instructions,
    cache_examples=True
).launch()