import gradio as gr import pandas as pd import backtrader as bt import requests # Define the Markdown-formatted instructions with open("instructions.md", "r") as md_file: instructions = md_file.read() class TrendFollowingStrategy(bt.Strategy): params = (('ma_period', 15),) def __init__(self): self.ma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.ma_period) self.crossover = bt.ind.CrossOver(self.data.close, self.ma) self.last_signal = None self.last_signal_timeframe = self.data._timeframe # Additional tracking self.trade_count = 0 self.win_count = 0 self.loss_count = 0 self.trade_log = [] # Store trade details as a list of dictionaries def next(self): # Check if we are in the market if not self.position: # We are not in the market, look for a signal to enter if self.crossover > 0: self.buy() # Execute a buy order self.last_signal = 'CALL' elif self.crossover < 0: self.sell() # Execute a sell order self.last_signal = 'PUT' else: # We are in the market, look for a signal to close if self.position.size > 0 and self.crossover < 0: # We are long and get a sell signal self.close() # Close the long position elif self.position.size < 0 and self.crossover > 0: # We are short and get a buy signal self.close() # Close the short position def notify_trade(self, trade): if trade.isclosed: outcome = 'win' if trade.pnl > 0 else 'loss' self.log_trade(self.last_signal, outcome) def log_trade(self, trade_type, outcome): """ Log the details of each trade. """ self.trade_count += 1 if outcome == 'win': self.win_count += 1 elif outcome == 'loss': self.loss_count += 1 trade_details = { 'trade_num': self.trade_count, 'trade_type': trade_type, 'outcome': outcome } self.trade_log.append(trade_details) print(f"Trade {self.trade_count}: {trade_type} - {outcome}") def get_trade_log(self): """ Get the trade log as a list of dictionaries. """ return self.trade_log def fetch_forex_intraday(api_key, from_symbol, to_symbol, interval, outputsize='compact'): url = f'https://www.alphavantage.co/query?function=FX_INTRADAY&from_symbol={from_symbol}&to_symbol={to_symbol}&interval={interval}&apikey={api_key}&outputsize={outputsize}' response = requests.get(url) data = response.json() # Extracting the time series data from the JSON object time_series_key = 'Time Series FX (' + interval + ')' forex_data = pd.DataFrame(data[time_series_key]).T forex_data.columns = ['Open', 'High', 'Low', 'Close'] # Convert index to datetime and sort data forex_data.index = pd.to_datetime(forex_data.index) forex_data.sort_index(inplace=True) # Convert columns to numeric forex_data = forex_data.apply(pd.to_numeric) return forex_data def analyze_sentiment(json_response, target_ticker): """ Analyze the sentiment data for a specific ticker. :param json_response: The JSON response from the API. :param target_ticker: The ticker symbol to analyze (e.g., base_ticker). :return: A string describing the overall sentiment for the target ticker. """ if not json_response or "feed" not in json_response: return "No data available for analysis" sentiment_label = "Neutral" # Default sentiment highest_relevance = 0 # Track the highest relevance score # Loop through each news item in the feed for item in json_response.get("feed", []): # Check each ticker sentiment in the item for ticker_data in item.get("ticker_sentiment", []): if ticker_data["ticker"] == target_ticker: relevance_score = float(ticker_data.get("relevance_score", 0)) sentiment_score = float(ticker_data.get("ticker_sentiment_score", 0)) # Determine the sentiment label based on the score if relevance_score > highest_relevance: highest_relevance = relevance_score if sentiment_score <= -0.35: sentiment_label = "Bearish" elif -0.35 < sentiment_score <= -0.15: sentiment_label = "Somewhat-Bearish" elif -0.15 < sentiment_score < 0.15: sentiment_label = "Neutral" elif 0.15 <= sentiment_score < 0.35: sentiment_label = "Somewhat_Bullish" elif sentiment_score >= 0.35: sentiment_label = "Bullish" return sentiment_label def make_trade_decision(base_currency, quote_currency, quote_sentiment, base_sentiment): """ Make a trade decision based on sentiment analysis and forex signal parameters. :param quote_sentiment: Sentiment analysis result for {base_currency}. :param base_sentiment: Sentiment analysis result for {quote_currency}. :param entry: Entry price for the trade. :param stop_loss: Stop loss price. :param take_profit: Take profit price. :return: A decision to make the trade or not, along with sentiment analysis results. """ trade_decision = "No trade" decision_reason = f"{base_currency} Sentiment: {quote_sentiment}, {quote_currency} Sentiment: {base_sentiment}" # Adjust the logic to account for somewhat bullish/bearish sentiments bullish_sentiments = ["Bullish", "Somewhat_Bullish"] bearish_sentiments = ["Bearish", "Somewhat-Bearish"] if quote_sentiment in bullish_sentiments and base_sentiment not in bullish_sentiments: trade_decision = f"Sell {base_currency}/{quote_currency}" elif base_sentiment in bullish_sentiments and quote_sentiment not in bullish_sentiments: trade_decision = f"Buy {base_currency}/{quote_currency}" elif quote_sentiment in bearish_sentiments and base_sentiment not in bearish_sentiments: trade_decision = f"Buy {base_currency}/{quote_currency}" elif base_sentiment in bearish_sentiments and quote_sentiment not in bearish_sentiments: trade_decision = f"Sell {base_currency}/{quote_currency}" return trade_decision, decision_reason def fetch_sentiment_data(api_endpoint, ticker, api_key, sort='LATEST', limit=50): # Prepare the query parameters params = { 'function': 'NEWS_SENTIMENT', 'tickers': ticker, 'apikey': api_key, 'sort': sort, 'limit': limit } # Make the API request response = requests.get(api_endpoint, params=params) # Check if the request was successful if response.status_code == 200: # Return the JSON response return response.json() else: # Return an error message return f"Error fetching data: {response.status_code}" def load_data(api_key, from_symbol, to_symbol, interval): # Fetch data using the Alpha Vantage API forex_data = fetch_forex_intraday(api_key, from_symbol, to_symbol, interval) # Convert the pandas dataframe to a Backtrader data feed data = bt.feeds.PandasData(dataname=forex_data) return data def should_trade(strategy, api_endpoint, api_key, base_currency, quote_currency): consistent_periods = 3 if len(strategy) < consistent_periods: return False, None, None, "Insufficient data" if strategy.last_signal_timeframe in bt.TimeFrame.Names: timeframe = bt.TimeFrame.getname(strategy.last_signal_timeframe) else: timeframe = "Unknown Timeframe" base_ticker = f"FOREX:{base_currency}" quote_ticker = f"FOREX:{quote_currency}" # Fetch and analyze sentiment data json_response = fetch_sentiment_data(api_endpoint, f"{base_ticker}", api_key) #print(fetch_sentiment_data(api_endpoint, f"{quote_currency}", api_key)) #print(json_response) base_sentiment = analyze_sentiment(json_response, base_ticker) quote_sentiment = analyze_sentiment(json_response, quote_currency) # Make a trade decision based on technical and sentiment analysis trade_decision, decision_reason = make_trade_decision(base_currency, quote_currency, quote_sentiment, base_sentiment) signal = strategy.crossover[0] if all(strategy.crossover[-i] == signal for i in range(1, consistent_periods + 1)): #timeframe = bt.TimeFrame.getname(strategy.last_signal_timeframe) if strategy.last_signal_timeframe else "Unknown Timeframe" return True, trade_decision, timeframe, decision_reason return False, None, None, "Not enough consistent signals or conflicting sentiment " +decision_reason+"." import backtrader as bt def run_backtest(api_key, from_symbol, to_symbol, interval): # Set up Cerebro engine cerebro = bt.Cerebro() cerebro.addstrategy(TrendFollowingStrategy) # Add data feed to Cerebro data = load_data(api_key, from_symbol, to_symbol, interval) cerebro.adddata(data) # Set initial cash (optional) cerebro.broker.set_cash(10000) # Run the backtest strategy_instance = cerebro.run()[0] api_endpoint = "https://www.alphavantage.co/query" # Replace with actual endpoint # Calculate win and loss percentages total_trades = strategy_instance.trade_count total_wins = strategy_instance.win_count total_losses = strategy_instance.loss_count win_percentage = (total_wins / total_trades) * 100 loss_percentage = (total_losses / total_trades) * 100 # Determine if it's a buy or sell based on percentages if win_percentage > loss_percentage: signal = "Buy" color = "green" else: signal = "Sell" color = "red" # Get trade decision information trade_decision, trade_type, trade_timeframe, reason = should_trade(strategy_instance, api_endpoint, api_key, from_symbol, to_symbol) # Create an HTML message with the calculated statistics, trade log, and trade decision information html_message = f"""
Strategy Performance Summary:
On the {interval} timeframe
*****************************
Total Trades: {total_trades}
Total Wins: {total_wins} ({win_percentage:.2f}%)
Total Losses: {total_losses} ({loss_percentage:.2f}%)
Signal: {signal}
Trade Log:
Trade Decision:
Trade Type: {trade_type}
Timeframe: {trade_timeframe}
Reason: {reason}
""" return html_message # Define a list of popular currency pairs for the dropdowns from_currency_choices = ['EUR', 'GBP', 'USD', 'AUD', 'JPY'] to_currency_choices = ['USD', 'JPY', 'GBP', 'AUD', 'CAD'] # Placeholder link for API key api_key_link = "https://www.alphavantage.co/support/#api-key" api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key") from_currency_input = gr.Dropdown(label="From Currency", choices=['EUR', 'GBP', 'USD', 'AUD', 'JPY']) to_currency_input = gr.Dropdown(label="To Currency", choices=['USD', 'JPY', 'GBP', 'AUD', 'CAD']) interval_input = gr.Radio(label="Interval", choices=["1min", "5min", "15min", "30min", "60min"]) gr.Interface( fn=run_backtest, inputs=[api_key_input, from_currency_input, to_currency_input, interval_input], outputs="html", live=True, title="Forex Trend Trading Signals", description=instructions, cache_examples=True ).launch()