tosin2013 commited on
Commit
b8429e3
1 Parent(s): 2eb1518

Upload 6 files

Browse files
Files changed (6) hide show
  1. Montecarlo_Automated.ipynb +1192 -0
  2. README.md +1 -13
  3. app.py +245 -0
  4. client-test.py +9 -0
  5. requirements.txt +10 -0
  6. testimage-push.py +23 -0
Montecarlo_Automated.ipynb ADDED
@@ -0,0 +1,1192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "___\n",
8
+ "\n",
9
+ "<a href='https://github.com/eliasmelul/'> <img src='https://s3.us-east-2.amazonaws.com/wordontheamazon.com/NoMargin_NewLogo.png' style='width: 15em;' align='right' /></a>\n",
10
+ "# Finance with Python\n",
11
+ "### Monte Carlo Simulations for Stock Price Predictions\n",
12
+ "___\n",
13
+ "<h4 align=\"right\">by Elias Melul, Data Scientist </h4> \n",
14
+ "\n",
15
+ "___\n",
16
+ "\n",
17
+ "\n",
18
+ "\n",
19
+ "In this notebook, we introduce how to use Monte Carlo simulations for forecasting future stock prices.\n",
20
+ "\n",
21
+ "$$\n",
22
+ "{Price Today}={Price Yesterday * e^r}\n",
23
+ "$$\n",
24
+ "\n",
25
+ "* We know yesterday's price. \n",
26
+ "\n",
27
+ "* We want to predict today's price. \n",
28
+ "\n",
29
+ "* What we do not know is the rate of return, r, of the share price between yesterday and today. \n",
30
+ "\n",
31
+ "This is where the Monte Carlo simulation comes in! But first, how do we compute the return?\n",
32
+ "\n",
33
+ "### Brownian Motion\n",
34
+ "\n",
35
+ "Brownian motion will be the main driver for estimating the return. It is a stochastic process used for modeling random behavior over time. For simplicity, we will use regular brownian motion, instead of the Geometric Brownian Motion, which is more common and less questionable in stock pricing applications.\n",
36
+ "\n",
37
+ "**Brownian Motion** has two main main components:\n",
38
+ "1. Drift - the direction that rates of returns have had in the past. That is, the expected return of the stock.\n",
39
+ "$$\n",
40
+ "{Drift} = ({mean} - \\frac{1}{2} {Var})\n",
41
+ "$$\n",
42
+ "\n",
43
+ " Why do we multiply the variance by 0.5? Because historical values are eroded in the future.\n",
44
+ " \n",
45
+ "\n",
46
+ "2. Volatility - random variable. This is the historical volatility multiplied by a random, standard normally distributed variable.\n",
47
+ "\n",
48
+ "$$\n",
49
+ "{Volatility} = {Std.Dev. * Z([Rand(0;1)])}\n",
50
+ "$$\n",
51
+ "\n",
52
+ "Therefore, our asset pricing equation ends up looking like this:\n",
53
+ "\n",
54
+ "$$\n",
55
+ "{Price Today}={Price Yesterday * e^{mean-\\frac{1}{2}{Var} + Std.Dev * Z([Rand(0;1)])}}\n",
56
+ "$$\n",
57
+ "\n",
58
+ "\n",
59
+ "\n",
60
+ "This technique will be used for every day into the future you want to predict, and for however many trials the monte carlo simulation will run!\n",
61
+ "\n",
62
+ "---\n",
63
+ "\n",
64
+ "First, import required libraries."
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": 134,
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "import numpy as np\n",
74
+ "import pandas as pd\n",
75
+ "#from pandas_datareader import data as wb\n",
76
+ "import matplotlib.pyplot as plt\n",
77
+ "from scipy.stats import norm, gmean, cauchy\n",
78
+ "import seaborn as sns\n",
79
+ "from datetime import datetime\n",
80
+ "import os\n",
81
+ "\n",
82
+ "%matplotlib inline"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": 135,
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "# set Variables\n",
92
+ "os.environ['API_KEY'] = 'XXXXXX'\n",
93
+ "tickers = ['AMP'] # Example tickers\n",
94
+ "days=180\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": []
103
+ },
104
+ {
105
+ "cell_type": "markdown",
106
+ "metadata": {},
107
+ "source": [
108
+ "Import data for one or multiple stocks from a specified date until the last available data. Data source: yahoo finance.\n",
109
+ "\n",
110
+ "For this, it's better if we define a function that imports stock(s) daily data for any publicly traded company as defined by the user starting at a user-defined date until today. We will use the Adjusted Close price."
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": 136,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "from alpha_vantage.timeseries import TimeSeries\n",
120
+ "import pandas as pd\n",
121
+ "from datetime import datetime\n",
122
+ "\n",
123
+ "# Function to import stock data using Alpha Vantage\n",
124
+ "def import_stock_data_alphavantage(tickers, api_key, start='2024-1-01', end=datetime.today().strftime('%Y-%m-%d')):\n",
125
+ " data = pd.DataFrame()\n",
126
+ " ts = TimeSeries(key=api_key, output_format='pandas') # Initialize TimeSeries with your API key\n",
127
+ " if isinstance(tickers, str):\n",
128
+ " tickers = [tickers] # Convert to list if only one ticker is provided\n",
129
+ " for ticker in tickers:\n",
130
+ " # Get the stock data\n",
131
+ " df, meta_data = ts.get_daily_adjusted(ticker, outputsize='full')\n",
132
+ " # Selecting only the '5. adjusted close' column and renaming it to the ticker\n",
133
+ " df = df['5. adjusted close'].rename(ticker).to_frame()\n",
134
+ " # Filter the data based on the start and end dates\n",
135
+ " df = df[(df.index >= start) & (df.index <= end)]\n",
136
+ " # If data is empty, initialize it with the current df\n",
137
+ " if data.empty:\n",
138
+ " data = df\n",
139
+ " else:\n",
140
+ " # If not empty, join the new df with the existing data\n",
141
+ " data = data.join(df, how='outer')\n",
142
+ " return data\n",
143
+ "\n"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": 137,
149
+ "metadata": {},
150
+ "outputs": [
151
+ {
152
+ "name": "stdout",
153
+ "output_type": "stream",
154
+ "text": [
155
+ " AMP\n",
156
+ "date \n",
157
+ "2024-02-02 390.69\n",
158
+ "2024-02-01 386.02\n",
159
+ "2024-01-31 386.83\n",
160
+ "2024-01-30 393.55\n",
161
+ "2024-01-29 393.11\n"
162
+ ]
163
+ }
164
+ ],
165
+ "source": [
166
+ "# Example usage\n",
167
+ "api_key = os.environ.get('API_KEY')\n",
168
+ "data = import_stock_data_alphavantage(tickers, api_key)\n",
169
+ "print(data.head())\n"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "markdown",
174
+ "metadata": {},
175
+ "source": [
176
+ "Then, we compute the logarithmic returns of the data."
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": 138,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "def log_returns(data):\n",
186
+ " return (np.log(1+data.pct_change()))"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": 139,
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "log_return = log_returns(data)"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "markdown",
200
+ "metadata": {},
201
+ "source": [
202
+ "We also create a function to compute the simple returns."
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": 140,
208
+ "metadata": {},
209
+ "outputs": [],
210
+ "source": [
211
+ "def simple_returns(data):\n",
212
+ " return ((data/data.shift(1))-1)"
213
+ ]
214
+ },
215
+ {
216
+ "cell_type": "markdown",
217
+ "metadata": {},
218
+ "source": [
219
+ "## CAPM and Sharpe\n",
220
+ "\n",
221
+ "Before we jump into Monte Carlo Simulations, we would like to report some statistics with it, including the Beta and Sharpe Ratio of the stock, compared to the _market portfolio_. To understand these metrics, we first must understand the underlying concepts of the _Capital Asset Pricing Model,_ starting with the _market portfolio_.\n",
222
+ "\n",
223
+ "* The market portfolio is the theoretical combination of all possible investments in the world. However, there is no such thing as a market portfolio. We approximate it with a stock market index. In our case, we use the S&P500, but you can specify any index you want to!\n",
224
+ "\n",
225
+ "* We also note that there is no such thing as a risk-free asset. We will use a 10-year US government bond yield of 2.5% instead.\n",
226
+ "\n",
227
+ "* The equity premium is the difference between the expected return of the market and the risk-free asset. This value is typically between 4.5 and 5.5%. We can use 5%.\n",
228
+ "\n",
229
+ "We use the _market portfolio_ to compute the Beta, the CAPM expected return, and the Sharpe Ratio of a stock.\n",
230
+ "1. **Beta**: measures the market risk that cannot be avoided through diversification. This is the relationship between the stock and the market portfolio. In other words, it is a measure of how much risk the investment will add to a portfolio that looks like the market.\n",
231
+ "##### $$ \n",
232
+ "\\beta_{i} = \\frac{\\sigma_{i,m}}{\\sigma_{m}^2}\n",
233
+ "$$\n",
234
+ "\n",
235
+ " When beta = 0, it means that there's no relationship.\n",
236
+ " \n",
237
+ " When beta < 1, it means that the stock is defensive (less prone to high highs and low lows)\n",
238
+ " \n",
239
+ " When beta > 1, it means that the stock is aggresive (more prone to high highs and low lows)\n",
240
+ " \n",
241
+ " \n",
242
+ "2. **Expected Return CAPM**: calculates the expected return of a security adjusted to the risk taken. This equates to the return expected from taking the extra risk of purchasing this security.\n",
243
+ "##### $$\n",
244
+ "\\overline{r_{i}} = r_f + \\beta_{i}(\\overline{r_{m}} - r_f) \n",
245
+ "$$\n",
246
+ "\n",
247
+ "3. **Sharpe Ratio**: measures the performance of a security compared to a risk-free asset, after adjusting for its risk. This is the excess return per unit of risk of an investment.\n",
248
+ "##### $$\n",
249
+ "Sharpe = \\frac{\\overline{r_{i}} - r_f}{\\sigma_{i}}\n",
250
+ "$$\n",
251
+ " When Sharpe > 1, GOOD risk-adjusted returns\n",
252
+ " \n",
253
+ " When Sharpe > 2, VERY GOOD risk-adjusted returns\n",
254
+ " \n",
255
+ " When Sharpe > 3, EXCELLENT risk-adjusted returns\n",
256
+ " "
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": 141,
262
+ "metadata": {},
263
+ "outputs": [],
264
+ "source": [
265
+ "def market_data_combination(data, mark_ticker = \"SPY\", start='2022-1-1'):\n",
266
+ " api_key = os.environ.get('API_KEY')\n",
267
+ " market_data = import_stock_data_alphavantage(mark_ticker, api_key)\n",
268
+ " market_rets = log_returns(market_data).dropna()\n",
269
+ " ann_return = np.exp(market_rets.mean()*252).values-1\n",
270
+ " data = data.merge(market_data, left_index=True, right_index=True)\n",
271
+ " # Add debugging statements here\n",
272
+ " print(\"Market data shape:\", market_data.shape)\n",
273
+ " print(\"Number of non-NaN entries in market data:\", sum(~market_data.isna().values.flatten()))\n",
274
+ " print(\"First few rows of market data:\\n\", market_data.head())\n",
275
+ " return data, ann_return"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": 142,
281
+ "metadata": {},
282
+ "outputs": [],
283
+ "source": [
284
+ "def beta_sharpe(data, mark_ticker = \"SPY\", start='2010-1-1', riskfree = 0.025):\n",
285
+ " \n",
286
+ " \"\"\"\n",
287
+ " Input: \n",
288
+ " 1. data: dataframe of stock price data\n",
289
+ " 2. mark_ticker: ticker of the market data you want to compute CAPM metrics with (default is ^GSPC)\n",
290
+ " 3. start: data from which to download data (default Jan 1st 2010)\n",
291
+ " 4. riskfree: the assumed risk free yield (US 10 Year Bond is assumed: 2.5%)\n",
292
+ " \n",
293
+ " Output:\n",
294
+ " 1. Dataframe with CAPM metrics computed against specified market procy\n",
295
+ " \"\"\"\n",
296
+ " # Beta\n",
297
+ " dd, mark_ret = market_data_combination(data, mark_ticker, start)\n",
298
+ " print(\"printing dd\")\n",
299
+ " print(dd.head())\n",
300
+ " print(\"printing mark_ret\")\n",
301
+ " print(mark_ret)\n",
302
+ " log_ret = log_returns(dd)\n",
303
+ " covar = log_ret.cov()*252\n",
304
+ " covar = pd.DataFrame(covar.iloc[:-1,-1])\n",
305
+ " mrk_var = log_ret.iloc[:,-1].var()*252\n",
306
+ " beta = covar/mrk_var\n",
307
+ " \n",
308
+ " stdev_ret = pd.DataFrame(((log_ret.std()*250**0.5)[:-1]), columns=['STD'])\n",
309
+ " beta = beta.merge(stdev_ret, left_index=True, right_index=True)\n",
310
+ " \n",
311
+ " # CAPM\n",
312
+ " for i, row in beta.iterrows():\n",
313
+ " beta.at[i,'CAPM'] = riskfree + (row[mark_ticker] * (mark_ret-riskfree))\n",
314
+ " # Sharpe\n",
315
+ " for i, row in beta.iterrows():\n",
316
+ " beta.at[i,'Sharpe'] = ((row['CAPM']-riskfree)/(row['STD']))\n",
317
+ " beta.rename(columns={\"SPY\":\"Beta\"}, inplace=True)\n",
318
+ " \n",
319
+ " return beta"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": 143,
325
+ "metadata": {},
326
+ "outputs": [
327
+ {
328
+ "name": "stdout",
329
+ "output_type": "stream",
330
+ "text": [
331
+ " AMP\n",
332
+ "date \n",
333
+ "2024-02-02 390.69\n",
334
+ "2024-02-01 386.02\n",
335
+ "2024-01-31 386.83\n",
336
+ "2024-01-30 393.55\n",
337
+ "2024-01-29 393.11\n",
338
+ "2024-01-26 391.40\n",
339
+ "2024-01-25 391.38\n",
340
+ "2024-01-24 389.46\n",
341
+ "2024-01-23 387.80\n",
342
+ "2024-01-22 387.11\n",
343
+ "2024-01-19 381.67\n",
344
+ "2024-01-18 374.88\n",
345
+ "2024-01-17 372.06\n",
346
+ "2024-01-16 373.47\n",
347
+ "2024-01-12 376.40\n",
348
+ "2024-01-11 378.27\n",
349
+ "2024-01-10 377.99\n",
350
+ "2024-01-09 375.91\n",
351
+ "2024-01-08 384.44\n",
352
+ "2024-01-05 382.10\n",
353
+ "2024-01-04 379.04\n",
354
+ "2024-01-03 380.54\n",
355
+ "2024-01-02 379.03\n",
356
+ "Market data shape: (23, 1)\n",
357
+ "Number of non-NaN entries in market data: 23\n",
358
+ "First few rows of market data:\n",
359
+ " SPY\n",
360
+ "date \n",
361
+ "2024-02-02 494.35\n",
362
+ "2024-02-01 489.20\n",
363
+ "2024-01-31 482.88\n",
364
+ "2024-01-30 490.89\n",
365
+ "2024-01-29 491.27\n",
366
+ "printing dd\n",
367
+ " AMP SPY\n",
368
+ "date \n",
369
+ "2024-02-02 390.69 494.35\n",
370
+ "2024-02-01 386.02 489.20\n",
371
+ "2024-01-31 386.83 482.88\n",
372
+ "2024-01-30 393.55 490.89\n",
373
+ "2024-01-29 393.11 491.27\n",
374
+ "printing mark_ret\n",
375
+ "[-0.40200844]\n"
376
+ ]
377
+ },
378
+ {
379
+ "data": {
380
+ "text/html": [
381
+ "<div>\n",
382
+ "<style scoped>\n",
383
+ " .dataframe tbody tr th:only-of-type {\n",
384
+ " vertical-align: middle;\n",
385
+ " }\n",
386
+ "\n",
387
+ " .dataframe tbody tr th {\n",
388
+ " vertical-align: top;\n",
389
+ " }\n",
390
+ "\n",
391
+ " .dataframe thead th {\n",
392
+ " text-align: right;\n",
393
+ " }\n",
394
+ "</style>\n",
395
+ "<table border=\"1\" class=\"dataframe\">\n",
396
+ " <thead>\n",
397
+ " <tr style=\"text-align: right;\">\n",
398
+ " <th></th>\n",
399
+ " <th>Beta</th>\n",
400
+ " <th>STD</th>\n",
401
+ " <th>CAPM</th>\n",
402
+ " <th>Sharpe</th>\n",
403
+ " </tr>\n",
404
+ " </thead>\n",
405
+ " <tbody>\n",
406
+ " <tr>\n",
407
+ " <th>AMP</th>\n",
408
+ " <td>0.776008</td>\n",
409
+ " <td>0.147075</td>\n",
410
+ " <td>-0.306362</td>\n",
411
+ " <td>-2.253011</td>\n",
412
+ " </tr>\n",
413
+ " </tbody>\n",
414
+ "</table>\n",
415
+ "</div>"
416
+ ],
417
+ "text/plain": [
418
+ " Beta STD CAPM Sharpe\n",
419
+ "AMP 0.776008 0.147075 -0.306362 -2.253011"
420
+ ]
421
+ },
422
+ "execution_count": 143,
423
+ "metadata": {},
424
+ "output_type": "execute_result"
425
+ }
426
+ ],
427
+ "source": [
428
+ "print(data)\n",
429
+ "beta_sharpe(data)"
430
+ ]
431
+ },
432
+ {
433
+ "cell_type": "markdown",
434
+ "metadata": {},
435
+ "source": [
436
+ "**Brownian Motion**\n",
437
+ "\n",
438
+ "Now that we have our returns, we can compute the brownian motion, as explained in the introduction.\n",
439
+ "1. Calculate the drift\n",
440
+ "2. Calculate the variance\n",
441
+ "3. Calculate the daily returns based on the drift and variance"
442
+ ]
443
+ },
444
+ {
445
+ "cell_type": "code",
446
+ "execution_count": 144,
447
+ "metadata": {},
448
+ "outputs": [],
449
+ "source": [
450
+ "def drift_calc(data, return_type='log'):\n",
451
+ " try:\n",
452
+ " if return_type == 'log':\n",
453
+ " lr = log_returns(data)\n",
454
+ " elif return_type == 'simple':\n",
455
+ " lr = simple_returns(data)\n",
456
+ " u = lr.mean()\n",
457
+ " var = lr.var()\n",
458
+ " drift = u - (0.5 * var)\n",
459
+ " return drift.values\n",
460
+ " except Exception as e:\n",
461
+ " print(f\"Error in drift_calc: {str(e)}\")\n",
462
+ " print(\"Please check the input data and return type\")\n",
463
+ " return None\n"
464
+ ]
465
+ },
466
+ {
467
+ "cell_type": "code",
468
+ "execution_count": 145,
469
+ "metadata": {},
470
+ "outputs": [
471
+ {
472
+ "name": "stdout",
473
+ "output_type": "stream",
474
+ "text": [
475
+ "[-0.00142049]\n"
476
+ ]
477
+ }
478
+ ],
479
+ "source": [
480
+ "drift_calc(data)\n",
481
+ "print(drift_calc(data))"
482
+ ]
483
+ },
484
+ {
485
+ "cell_type": "markdown",
486
+ "metadata": {},
487
+ "source": [
488
+ "We calculated the drift above, but now, we must calculate the daily returns for the data. There are things to consider:\n",
489
+ "1. How many days into the future will we predict? (How many rows)\n",
490
+ "2. How many iterations of these predictions will we compute? (How many columns)\n",
491
+ "\n",
492
+ "This generates the daily returns (not prices!) for each day into the future for each iteration (simulation) based on a normal distribution."
493
+ ]
494
+ },
495
+ {
496
+ "cell_type": "code",
497
+ "execution_count": 146,
498
+ "metadata": {},
499
+ "outputs": [],
500
+ "source": [
501
+ "import numpy as np\n",
502
+ "from scipy.stats import norm # Add this import statement\n",
503
+ "# Other necessary imports...\n",
504
+ "\n",
505
+ "def daily_returns(data, days, iterations, return_type='log'):\n",
506
+ " ft = drift_calc(data, return_type)\n",
507
+ " if return_type == 'log':\n",
508
+ " try:\n",
509
+ " stv = log_returns(data).std().values\n",
510
+ " except:\n",
511
+ " stv = log_returns(data).std()\n",
512
+ " elif return_type == 'simple':\n",
513
+ " try:\n",
514
+ " stv = simple_returns(data).std().values\n",
515
+ " except:\n",
516
+ " stv = simple_returns(data).std()\n",
517
+ " \n",
518
+ " # Oftentimes, we find that the distribution of returns is a variation of the normal distribution where it has a fat tail\n",
519
+ " # This distribution is called cauchy distribution\n",
520
+ " dr = np.exp(ft + stv * norm.ppf(np.random.rand(days, iterations)))\n",
521
+ " return dr\n"
522
+ ]
523
+ },
524
+ {
525
+ "cell_type": "code",
526
+ "execution_count": 147,
527
+ "metadata": {},
528
+ "outputs": [],
529
+ "source": [
530
+ "dr = daily_returns(data, 2, 3)"
531
+ ]
532
+ },
533
+ {
534
+ "cell_type": "markdown",
535
+ "metadata": {},
536
+ "source": [
537
+ "**Note**: This next function is used to calculate the probability of a stock having a higher price or higher returns than specified over the period defined. "
538
+ ]
539
+ },
540
+ {
541
+ "cell_type": "code",
542
+ "execution_count": 148,
543
+ "metadata": {},
544
+ "outputs": [],
545
+ "source": [
546
+ "def probs_find(predicted, higherthan, on = 'value'):\n",
547
+ " \"\"\"\n",
548
+ " This function calculated the probability of a stock being above a certain threshhold, which can be defined as a value (final stock price) or return rate (percentage change)\n",
549
+ " Input: \n",
550
+ " 1. predicted: dataframe with all the predicted prices (days and simulations)\n",
551
+ " 2. higherthan: specified threshhold to which compute the probability (ex. 0 on return will compute the probability of at least breakeven)\n",
552
+ " 3. on: 'return' or 'value', the return of the stock or the final value of stock for every simulation over the time specified\n",
553
+ " \"\"\"\n",
554
+ " if on == 'return':\n",
555
+ " predicted0 = predicted.iloc[0,0]\n",
556
+ " predicted = predicted.iloc[-1]\n",
557
+ " predList = list(predicted)\n",
558
+ " over = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 >= higherthan]\n",
559
+ " less = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 < higherthan]\n",
560
+ " elif on == 'value':\n",
561
+ " predicted = predicted.iloc[-1]\n",
562
+ " predList = list(predicted)\n",
563
+ " over = [i for i in predList if i >= higherthan]\n",
564
+ " less = [i for i in predList if i < higherthan]\n",
565
+ " else:\n",
566
+ " print(\"'on' must be either value or return\")\n",
567
+ " return (len(over)/(len(over)+len(less)))"
568
+ ]
569
+ },
570
+ {
571
+ "cell_type": "markdown",
572
+ "metadata": {},
573
+ "source": [
574
+ "Example: We would like to find out the probability that our investment in PG will breakeven or make a profit over the course of a year (financial year is about 252 days). There are two ways we can do this:\n",
575
+ "1. Returns = 0\n",
576
+ "2. Final stock price = initial stock price ($44.05 - Jan 1st 2010, the first data point)\n",
577
+ "\n",
578
+ "So, with the simulation predicted values, we will predict said probabilities.\n",
579
+ "\n",
580
+ "---\n",
581
+ "\n",
582
+ "First, however, we must run the simulation! How does it work?\n",
583
+ "\n",
584
+ "1. Calculate the daily returns for every day and every iteration (simulation) of the data. \n",
585
+ "2. Creates an equally large matrix of size [days x iteration] full of zeroes.\n",
586
+ "3. Input the last stock price value in the first row (day 0) of the \"empty\" matrix (part 2). This is our starting point.\n",
587
+ "4. Calculate \"today's price\" based on yesterday's multiplied by the daily return generated. That is, multiply the daily return generated for every simulation with the stock price calculated for the previous day (the previous row) for every simulation.\n",
588
+ "\n",
589
+ "Does that sounds familiar? The fourth step multiplies the daily returns with the price of the stock of the previous day!"
590
+ ]
591
+ },
592
+ {
593
+ "cell_type": "code",
594
+ "execution_count": 149,
595
+ "metadata": {
596
+ "scrolled": false
597
+ },
598
+ "outputs": [],
599
+ "source": [
600
+ "import matplotlib.pyplot as plt\n",
601
+ "import seaborn as sns\n",
602
+ "def simulate_mc(data, days, iterations, return_type='log', plot=True):\n",
603
+ " # Generate daily returns\n",
604
+ " returns = daily_returns(data, days, iterations, return_type)\n",
605
+ " # Create empty matrix\n",
606
+ " price_list = np.zeros_like(returns)\n",
607
+ " # Put the last actual price in the first row of matrix. \n",
608
+ " price_list[0] = data.iloc[-1]\n",
609
+ " # Calculate the price of each day\n",
610
+ " for t in range(1,days):\n",
611
+ " price_list[t] = price_list[t-1]*returns[t]\n",
612
+ " \n",
613
+ " # Plot Option\n",
614
+ " if plot == True:\n",
615
+ " x = pd.DataFrame(price_list).iloc[-1]\n",
616
+ " fig, ax = plt.subplots(1,2, figsize=(14,4))\n",
617
+ " sns.distplot(x, ax=ax[0])\n",
618
+ " sns.distplot(x, hist_kws={'cumulative':True},kde_kws={'cumulative':True},ax=ax[1])\n",
619
+ " plt.xlabel(\"Stock Price\")\n",
620
+ " plt.show()\n",
621
+ " \n",
622
+ " #CAPM and Sharpe Ratio\n",
623
+ " \n",
624
+ " # Printing information about stock\n",
625
+ " try:\n",
626
+ " [print(nam) for nam in data.columns]\n",
627
+ " except:\n",
628
+ " print(data.name)\n",
629
+ " print(f\"Days: {days-1}\")\n",
630
+ " print(f\"Expected Value: ${round(pd.DataFrame(price_list).iloc[-1].mean(),2)}\")\n",
631
+ " print(f\"Return: {round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(),2)}%\")\n",
632
+ " print(f\"Probability of Breakeven: {probs_find(pd.DataFrame(price_list),0, on='return')}\")\n",
633
+ " \n",
634
+ " \n",
635
+ " return pd.DataFrame(price_list)"
636
+ ]
637
+ },
638
+ {
639
+ "cell_type": "code",
640
+ "execution_count": 150,
641
+ "metadata": {},
642
+ "outputs": [
643
+ {
644
+ "name": "stderr",
645
+ "output_type": "stream",
646
+ "text": [
647
+ "/tmp/ipykernel_5723/256993402.py:18: UserWarning: \n",
648
+ "\n",
649
+ "`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n",
650
+ "\n",
651
+ "Please adapt your code to use either `displot` (a figure-level function with\n",
652
+ "similar flexibility) or `histplot` (an axes-level function for histograms).\n",
653
+ "\n",
654
+ "For a guide to updating your code to use the new functions, please see\n",
655
+ "https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n",
656
+ "\n",
657
+ " sns.distplot(x, ax=ax[0])\n",
658
+ "/tmp/ipykernel_5723/256993402.py:19: UserWarning: \n",
659
+ "\n",
660
+ "`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n",
661
+ "\n",
662
+ "Please adapt your code to use either `displot` (a figure-level function with\n",
663
+ "similar flexibility) or `histplot` (an axes-level function for histograms).\n",
664
+ "\n",
665
+ "For a guide to updating your code to use the new functions, please see\n",
666
+ "https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n",
667
+ "\n",
668
+ " sns.distplot(x, hist_kws={'cumulative':True},kde_kws={'cumulative':True},ax=ax[1])\n"
669
+ ]
670
+ },
671
+ {
672
+ "data": {
673
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAFzCAYAAAB7BBMsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH5klEQVR4nOzde1xUdf4/8NeZO9fhzgByU/CuoKiIWXYh0exil12r3TS3tW+72a/WrTbb0nbru25budbm5tZW1m5m38rc1owy1G4SKuBdUQQEgeHODAwwAzPn98cwoyQo4MAZmNfzsbPAmc8ZXnOc4MN7PhdBFEURRERERERERERELiKTOgAREREREREREQ0vLDgREREREREREZFLseBEREREREREREQuxYITERERERERERG5FAtORERERERERETkUiw4ERERERERERGRS7HgRERERERERERELsWCExERERERERERuZRC6gBDlc1mQ0VFBfz8/CAIgtRxiIiIqAeiKKKpqQmRkZGQyfhem5TYfyIiIhoaXNF/YsGpnyoqKhAdHS11DCIiIuqlsrIyjBgxQuoYHo39JyIioqHlcvpPLDj1k5+fHwD7xff395c4DREREfXEaDQiOjra+bubpMP+ExER0dDgiv4TC0795BgG7u/vzw4TERHREMApXNJj/4mIiGhouZz+ExcyICIiIiIiIiIil2LBiYiIiIiIiIiIXIoFJyIiIiIiIiIicikWnIiIiIiIiIiIyKVYcCIiIiIiIiIiIpdiwYmIiIiIiIiIiFyKBSciIiIiIiIiInIpFpyIiIiIPMw333yDm266CZGRkRAEAVu3br3kObt378bUqVOhVquRkJCAjRs3DnhOIiIiGrpYcCIiIiLyMCaTCUlJSVi/fn2v2hcXF2PBggW45pprcODAATzyyCP45S9/iS+++GKAkxIREdFQpZA6ABERERENrvnz52P+/Pm9br9hwwbEx8fjpZdeAgCMGzcO3333Hf76178iIyNjoGISERHREMaCExERERFdVHZ2NtLT07scy8jIwCOPPHLR88xmM8xms/Nro9E4EPGIiGiIEUURHTYRlg4brKIIq9X+ta3zuP1rm/PrDut599lE2GwibCIgQoQoAjax82ux69e2zq/F87+G42sRNhsgwtHO8Rg//vpHj4WeH7u7DGLn93RktokiAMf9576neLGvL3E9F02LxuzEkAH+V+s7FpyIyKU25ZT2qt3dqTEDnISIiFxFr9cjPDy8y7Hw8HAYjUa0trbCy8ur2/PWrFmDP/zhD4MRkYiIXEwURTSZO2BoaUdTWwdMlg6YzB1osVjRbO5Ai7kDJou16zFLB1otVpg7bJ03K8zt533eYev82grbpaoo1GszRwZhNlhwIiIiIiIPsXLlSqxYscL5tdFoRHR0tISJiIg8lyiKMLS2o8poRpWxDVXGNlQ3mdFgsqChpR2GVvvHxhYLGlva0djaDusgV4VkAiATBPtNdt7njuMyAQLsn8P+P8gEAYJgP99+WOj8CAiC0PkRgOO4AMhw7vzuznE+1nnn//jxhPMeLyHM77zsne0u9jXOHZc577uwncyZxf51T1JiAwfk3+NyseBERERERBel0+lQVVXV5VhVVRX8/f17HN0EAGq1Gmq1eqDjERERgGZzB8rqW+y3hlacbWhBtaO41NSGysY2dPSjgKSQCdAo5VArZFApZM6PKkXXY2q5DCqlHEqZAKVcBoVcgEJm/6iUCVDIZVA4PsoFKGUyyGVdC0tDFWdvdI8FJyIiIiK6qLS0NGzfvr3LsR07diAtLU2iREREnqnVYkVRbTNO15hwuroZp2uaUVrfgsLqZrRYrL16DC+lHP5eCvhrlPDTKOCjUsBbJYdX50f753J4d36tlHNze+ofFpyIiIiIPExzczMKCwudXxcXF+PAgQMICgpCTEwMVq5cifLycrz77rsAgAceeACvvvoqHn/8cfziF7/Azp078X//93/47LPPpHoKRETDmtUmorjWhNe/KUJlYyv0xjbUNJvR2NJ+0fO8lHIE+agQ6K1EoLcKWm8l/DRK+GvsBSZfjYIFJBo0LDgREREReZj9+/fjmmuucX7tWGdpyZIl2LhxIyorK1Faem4TiPj4eHz22Wf4zW9+g5dffhkjRozAP//5T2RkZAx6diKi4cZmE3G6phn5pY04UmHA0QojjlUY0dre/YglL6UcYX5qhHbegn3UCPSxF5g0SvkgpyfqGQtORERERB7m6quvhij2vI7Hxo0buz0nPz9/AFMREXmGDqsNL3xRgJJaE87Ut+BMXUu3xSWlXIDOX4PIAC9EaL2cBSZfNf+Mp6GBr1QiIiIiIiIiF9mUU3rBsbpmM05VN6Owc90lc4ety/1KuYARgd6ICvBCZIAGkVovhPiph/RC2kQsOBERERERERG5kCiKqDC04WjnFLmaJnOX+72UcsSH+CAu2BuxwT6IDPCC/GL73hMNQSw4EREREREREbnA8Uojth+uxJEKQ5cFvmUCEBvsg4QwXySG+SIywIujl2jYY8GJiIiIiIiI6BK6myoHACZzBw6ebUTemQZUGNqcx5VyAaPD/TAhUouxOj8u6E0ehwUnIiIiIiIioj4qq2/B96drcbTcCGvnRgxyQcDYCD8kRwcgMcwPKoVM4pRE0mHBiYiIiIiIiKgXrDYRRysM2HO6DqX1Lc7jUQFemBoTgKQRAfDmLnJEAFhwIiIiIiIiIrqodqsN+0rqsaug2rk2k1wmYHKUFrMSQhAV4CVxQiL3w4ITEREREREReaye1mYC7COaDpY1YmdBNepNFgCAj1qB1PggpMYHwU+jHKyYREMOC05ERERERERE5xFFEccrjcg8qkdt87lC09WjQzEjPghKOddmIroUFpyIiIiIiIiIOtU2mfHfQxU4Vd0MAPBWyXFVYihmjgzmIuBEfcCCExEREREREXk8c4cVuwtq8N2pWlhFEXKZgCsTQjBndCjUSrnU8YiGHBaciIiIiIiIyKMVVjfj47yzMLTaFwQfE+6HGydHINhXLXEyoqGLBSciIiIiIiIali62IDgAWDps+OKoHtlFdQCAQG8lbpwcibE6PwiCMBgRiYYtySegrl+/HnFxcdBoNEhNTcXevXsv2v7DDz/E2LFjodFoMGnSJGzfvr3L/Vu2bMHcuXMRHBwMQRBw4MCBLvfX19fjoYcewpgxY+Dl5YWYmBj8v//3/2AwGFz91IiIiIiIiMhNnW1owau7Cp3FptT4IDx83WiMi/BnsYnIBSQtOH3wwQdYsWIFVq9ejby8PCQlJSEjIwPV1dXdtt+zZw/uuusu3HfffcjPz8fChQuxcOFCHDlyxNnGZDJh9uzZeP7557t9jIqKClRUVODFF1/EkSNHsHHjRmRmZuK+++4bkOdIRERERERE7kMURXx9sgYbvj6N2mYz/DQK3DsrDrckR3FRcCIXEkRRFKX65qmpqZg+fTpeffVVAIDNZkN0dDQeeughPPHEExe0X7RoEUwmE7Zt2+Y8NnPmTCQnJ2PDhg1d2paUlCA+Ph75+flITk6+aI4PP/wQP//5z2EymaBQ9G6WodFohFarhcFggL+/f6/OIfIElxq27HB3aswAJyEisuPvbPfBfwsiGmw/7puaO6z4OPcsjlQYAQCTorS4JSkS3mquNkP9Nxz/tnHF72zJyrcWiwW5ublIT08/F0YmQ3p6OrKzs7s9Jzs7u0t7AMjIyOixfW85LuDFik1msxlGo7HLjYiIiIiIiIaG2mYzXtt9GkcqjJALAm5JjsSd06NZbCIaIJIVnGpra2G1WhEeHt7leHh4OPR6fbfn6PX6PrXvbY5nn30W999//0XbrVmzBlqt1nmLjo7u9/ck8nSiKKLeZEFji0XqKERERETkAQr0Rvx9dyGqm+xT6JZdGY/U+GCu1UQ0gDy6lGs0GrFgwQKMHz8ezzzzzEXbrly5EitWrOhyLotORH3TbO7A1vxyFNU24/dbj0AmADPig3Dd2HD4dPPO0nAcmkpEREREg+uHojr892AFRAAxQd64OzUG/hql1LGIhj3JCk4hISGQy+Woqqrqcryqqgo6na7bc3Q6XZ/aX0xTUxPmzZsHPz8/fPLJJ1AqL/4DR61WQ61W9/n7EJFdlbEN72aXoKGl3XnMJgI/FNXjQFkjfpYai1GhvhImJCIiIqLhRBRFfHlMj90FNQCA6XGBuCkpEgoZFwYnGgySFZxUKhVSUlKQlZWFhQsXArAvGp6VlYXly5d3e05aWhqysrLwyCOPOI/t2LEDaWlpffreRqMRGRkZUKvV+PTTT6HRaPr7NIioFyoNrXj9myKYO2wI8lHhpykjEBHghdL6Fmw/XIlKQxs25ZTiwWsSEOSjkjouEREREbm5S21UY7WJ2HqgHLlnGgAA6ePCcM2YME6hIxpEkk6pW7FiBZYsWYJp06ZhxowZWLduHUwmE5YuXQoAWLx4MaKiorBmzRoAwMMPP4w5c+bgpZdewoIFC7B582bs378fr7/+uvMx6+vrUVpaioqKCgBAQUEBAPvoKJ1OB6PRiLlz56KlpQX//ve/uywAHhoaCrlcPpiXgGjY67DZ8FHuWZg7bIgJ8sY9M2Od0+dGhfrigTmj8Ma3RTjb0Ip//3AG/zNnJNQK/ndIRERERP1j6bBh875SnNA3QQCwMDkK0+ODpI5F5HEkLTgtWrQINTU1WLVqFfR6PZKTk5GZmelcGLy0tBSy84Y7zpo1C5s2bcJTTz2FJ598EomJidi6dSsmTpzobPPpp586C1YAcOeddwIAVq9ejWeeeQZ5eXnIyckBACQkJHTJU1xcjLi4uIF6ukQe6euCGlQa2uCtkuNnqTEXrNWklMvws9RYrN9VCL2xDf89WIk7UkZIlJaIiIiIhjJzhxXv7ClBSV0LFDIBd06PwfjI/m3pTkSXRxBFUZQ6xFBkNBqh1WphMBjg788fYEQO5w9vrjS0Yv2uQthEYNH0aCSNCOjxvOJaE974tggCgAevSUBkgBcXDScil+DvbPfBfwsicpXuptSZ263YmF2CM3UtUCtkWJIWh7gQHwnSkacZjn+3uOJ3NldLI6IBs/1wJWwiMCHSH5OjtBdtGx/ig0lRWogAvjiqH5yARERERDQstLVb8fYee7FJo5ThF1fEs9hEJDEWnIhoQJTWmXC6xgSZANwwKaJXCzTOHR8OuSDgVHUzCqubByElEREREQ11be1WbNxTgtL6c8Wm6CBvqWMReTwWnIhoQOzq3H52akwgAr17t/NcsK8aMzoXdPziqB6c8UtEREREF2M+r9jkpZTjvitGYkQgi01E7oAFJyJyufLGVhRU2XcFmTM6tE/nXjM2DEq5gPLGVuQU1w9MQCIiIiIa8tqtNvzrhzPOYtMvZscjKtBL6lhE1IkFJyJyud0F1QCApOgABPuq+3Sur1qB5OhAAMC72SWujkZEREREw4DVJmLzvjIU1ZqgVsiw9Io4RAWw2ETkTlhwIiKXMrS241iFEUDfRzc5pI0MBgB8cbQKFY2tLstGREREREOfzSZiS95ZHK80QiETcM/MWE6jI3JDCqkDENHwsr+kHiLsu86F+2v69Rg6rQbxIT4orjXhyS2HMXeC7qLth+M2pERERER0IVEU8cdtx5Bf1giZANw1IwYjQ32ljkVE3WDBiYhcxmoTsf9MAwBgRlzQZT1W2shgFNeasLekvnNdJw7IJCIiIhruNuWUXvT+rBNVyDpuX77hjpQRGBfhPxixiKgf+BccEbnM7oJqGFrb4a2SY0Lk5f3yHxfhD62XEi0WK45VGl2UkIiIiIiGqtwz9c5i001Jkc51P4nIPbHgREQu43hHampMIBSXOSJJLhMwNSYAAHCgtPEykxERERHRUHaqqgmf5JcDAK4eHepc85OI3BcLTkTkEtXGNuzq3J3ucqfTOTjetTpV3YRmc4dLHpOIiIiIhpaKxla8t7cUNhFIjg7A9ePDpY5ERL3AghMRucT2w5WwiUBMkDdC/NQuecxQPzVGBHrBJgKHzja65DGJiIiIaOhobLHgnewSWDpsGBnig9umRkEQBKljEVEvsOBERC6x7VAlAGBSlNalj5scHQAAyOe0OiIiIiKP0tZuxcY9JWhq60CYnxo/S42FQsY/YYmGCv7XSkSXrdLQiv1nGiAIwEQXF5wmjwiATADKG1tR3dTm0scmIiIiIvdkE0Vs3leK6iYz/DQK3DsrDl4qudSxiKgPWHAiosv2WefopumxQdB6KV362L5qBRLD/AAAB8saXfrYREREROSeMo/ocbKqGUq5gMUz4xDgrZI6EhH1EQtORHTZPjtsLzgtmBwxII8/eYR91NSRCuOAPD4RERERuY/cM/X4rrAWAHD71BGICvSSOBER9QcLTkR0Wc42tCC/tBGCAMyfpBuQ7zEuwh9yQUBNkxlVRk6rIyIiIhquSmpN2JpfAQC4dmwYJo8IkDYQEfUbC05EdFm2d45uSo0PQpifZkC+h0YpR0KYLwDgSIVhQL4HEREREUmrrL4F7+WcgVUUMTHSH9eODZM6EhFdBoXUAYhoaHOs37RgcuSAfp+JUVoUVDXhaLkR140NH9DvRURERESutymntMf72q02bPj6NEwWKyK1GtyREg2ZIAxiOiJyNY5wIqJ+K6tvwcGzBsgEYP7EgZlO5zAuwg8yAdAb21DTZB7Q70VEREREg0cURfznQAUqDW3wUcnx85mxUCn4pyrRUMf/iomo37Z1jm5KGxWMEF/1gH4vb5UCo0Lt0+qOclodERER0bCxr6QBeaUNEADcOSOGO9IRDRMsOBFRv3122L6g44JJAzudzmFilH23uqPcrY6IiIhoWDjb0IL/HrL3KedO0DnfYCSioY8FJyLql5JaE46UGyGXCZg3wNPpHMbq/CAAKG9shaG1fVC+JxERERENDJO5A5tySmG1iRgf4Y+rEkOkjkRELsSCExH1y2edu9PNGhWMIJ/BGfbsp1FiRKAXAOCEnqOciIiIiIYqmyji//aXobG1HcE+KtyRMgICFwknGlZYcCKifnGs33Tj5IhB/b7jIvwBACcqmwb1+xIRDUfr169HXFwcNBoNUlNTsXfv3ou2X7duHcaMGQMvLy9ER0fjN7/5Ddra2gYpLRENJ9+crMGp6mYo5QJ+NjMWGqVc6khE5GIsOBFRn52uacbxSiMUMgEZEwZnOp2Do+B0uqYZ5g7roH5vIqLh5IMPPsCKFSuwevVq5OXlISkpCRkZGaiuru62/aZNm/DEE09g9erVOH78ON5880188MEHePLJJwc5ORENdaV1Jnx1vAoAcHNSFHT+GokTEdFAYMGJiPrss87RTbMTQwZ9F5EwPzWCfFTosIkorG4e1O9NRDScrF27FsuWLcPSpUsxfvx4bNiwAd7e3njrrbe6bb9nzx5cccUVuPvuuxEXF4e5c+firrvuuuSoKCKi87VarNi8vww2EUgaocXUmACpIxHRAGHBiYj6zFFwWjBpcKfTAYAgCBin8wPAaXVERP1lsViQm5uL9PR05zGZTIb09HRkZ2d3e86sWbOQm5vrLDAVFRVh+/btuOGGG3r8PmazGUajscuNiDyXKIrYeqAcjS3tCPRW4pbkKK7bRDSMseBERH1yqqoJBVVNUMoFzB3k6XQOYx3rOOmNsImiJBmIiIay2tpaWK1WhIeHdzkeHh4OvV7f7Tl33303/vjHP2L27NlQKpUYNWoUrr766otOqVuzZg20Wq3zFh0d7dLnQURDS15pAw6XGyATgDunx3DdJqJhjgUnIuoTx2LhVyWGQuullCRDXLAPNEoZTBYryupbJMlARORpdu/ejT/96U/4+9//jry8PGzZsgWfffYZnn322R7PWblyJQwGg/NWVlY2iImJyJ2crmnGpwcrAADXjwtHdJC3xImIaKAppA5AREOHKIr47HDndLpB3p3ufHKZgNHhfjh01oDjnFZHRNRnISEhkMvlqKqq6nK8qqoKOl33o1effvpp3HPPPfjlL38JAJg0aRJMJhPuv/9+/P73v4dMduH7mGq1Gmq12vVPgIjcyqac0oveb7WJ2PD1abRbRYwK9cGVo0MHKRkRSYkjnIio1wqqmlBY3QyVQobrx4df+oQBNO68aXVERNQ3KpUKKSkpyMrKch6z2WzIyspCWlpat+e0tLRcUFSSy+3TYURObyaii/j6ZA3KG1vhpZTjJynRkHHdJiKPwBFORNRrjsXC54wOhZ9Gmul0DqPD/CATgOomM0pqTYgL8ZE0DxHRULNixQosWbIE06ZNw4wZM7Bu3TqYTCYsXboUALB48WJERUVhzZo1AICbbroJa9euxZQpU5CamorCwkI8/fTTuOmmm5yFJyKiH6s0tGLXiWoAwE1JEfCXaEkGIhp8LDgRUa+IougsON0o4XQ6By+VHHEhPiiqMeGr41X45ZUjpY5ERDSkLFq0CDU1NVi1ahX0ej2Sk5ORmZnpXEi8tLS0y4imp556CoIg4KmnnkJ5eTlCQ0Nx00034X//93+legpE5OY6bDZ8lHsWVlHE+Ah/JI0IkDoSEQ0iyafUrV+/HnFxcdBoNEhNTXVutduTDz/8EGPHjoVGo8GkSZOwffv2Lvdv2bIFc+fORXBwMARBwIEDBy54jLa2Njz44IMIDg6Gr68vbr/99gvWMCCiro5VGlFUa4JaIcN146SdTucwTmefVvfVcf73S0TUH8uXL8eZM2dgNpuRk5OD1NRU5327d+/Gxo0bnV8rFAqsXr0ahYWFaG1tRWlpKdavX4+AgIDBD05EQ8LughpUGtrgrZLjluRICJxKR+RRJC04ffDBB1ixYgVWr16NvLw8JCUlISMjA9XV1d2237NnD+666y7cd999yM/Px8KFC7Fw4UIcOXLE2cZkMmH27Nl4/vnne/y+v/nNb/Df//4XH374Ib7++mtUVFTgtttuc/nzIxpOHKObEsJ88emBCmzKKe32Npgc6zjtK2mAoaV9UL83EREREfWsvLEVuwvsf9fdnBQp+XIMRDT4JC04rV27FsuWLcPSpUsxfvx4bNiwAd7e3njrrbe6bf/yyy9j3rx5eOyxxzBu3Dg8++yzmDp1Kl599VVnm3vuuQerVq1Cenp6t49hMBjw5ptvYu3atbj22muRkpKCt99+G3v27MEPP/wwIM+TaKgTRRHbOgtOk6K0Eqc5J8hHhXB/Naw2EbtPdl+oJiIiIqLB1WG14aPcMthEYGKUFpM5lY7II0lWcLJYLMjNze1SGJLJZEhPT0d2dna352RnZ19QSMrIyOixfXdyc3PR3t7e5XHGjh2LmJiYiz6O2WyG0WjsciPyFEfKjSitb4FSLmBs5zQ2d+GYVrfjGKfVEREREbmDb07VoMpoho9KjpuTIqWOQ0QSkazgVFtbC6vV6lyY0iE8PBx6vb7bc/R6fZ/a9/QYKpXqgvUGLvU4a9asgVardd6io6N7/T2JhrpthysAAGN0/lApJF/6rYuxndPqvi6ogaXDJnEaIiIiIs9W22zG7oIaAMCNkyPhq+Y+VUSeyr3+cnRjK1euhMFgcN7KysqkjkQ0KM7fnc6dptM5jAj0QoivCk3mDuwtrpc6DhEREZHHEkUR/zlQjg6biMQwX0we4X59RyIaPJIVnEJCQiCXyy/YHa6qqgo6na7bc3Q6XZ/a9/QYFosFjY2NfXoctVoNf3//LjciT3DwrAFnG1rhrZJjTLif1HEuIBMEXDfWPvKRu9URERERSedAWSNO15igkAm4OYm70hF5OskKTiqVCikpKcjKynIes9lsyMrKQlpaWrfnpKWldWkPADt27OixfXdSUlKgVCq7PE5BQQFKS0v79DhEnuKzQ/bpdNeNC3e76XQO6ePPFZxEUZQ4DREREZHnabF0YPth+6j4a8eGIdhXLXEiIpKapBNqV6xYgSVLlmDatGmYMWMG1q1bB5PJhKVLlwIAFi9ejKioKKxZswYA8PDDD2POnDl46aWXsGDBAmzevBn79+/H66+/7nzM+vp6lJaWoqLC/kdyQUEBAPvIJp1OB61Wi/vuuw8rVqxAUFAQ/P398dBDDyEtLQ0zZ84c5CtA5N5stnPT6RZMikC9ySJxou7NTgiBWiHD2YZWFFQ1ud3C5kRERETDXeYRPUwWK8L81JidGCJ1HCJyA5IOV1i0aBFefPFFrFq1CsnJyThw4AAyMzOdC4OXlpaisrLS2X7WrFnYtGkTXn/9dSQlJeGjjz7C1q1bMXHiRGebTz/9FFOmTMGCBQsAAHfeeSemTJmCDRs2ONv89a9/xY033ojbb78dV111FXQ6HbZs2TJIz5po6Mgva0SFoQ0+KjmuHhMqdZweeankmJ1g79jsOMppdURERESDqbjWhP1nGgAAC5OjoJC556h4Ihpcgsj5J/1iNBqh1WphMBi4nhMNW6v/cwTvZJ/BwuRIrLtzCjbllEodqVt3p8Zg895SPLHlMCaP0OLT5bOljkREboS/s90H/y2Ihp8Oqw2zn98FvbEN0+MCceuUEVJHIhp0d6fGSB3B5VzxO5t7VBJRt9qtNmzrnE53y5QoidNc2nXjwiEIh3HorAEVja2IDPCSOhIRERHRkHepNxx/KKqD3tgGL6UcGRN6v5kTEQ1/HOtIRN36vrAWdSYLgnxUzulq7izUT41psYEAgB3HOK2OiIiIaKC1WDqc/a7rx4fDW8XxDER0DgtORNSt/xywL7x/4+QIKOVD40fF3PH2d9W+PKaXOAkRERHR8PfV8Sq0tluh89dgelyQ1HGIyM0Mjb8iiWhQtVg68MVRe9HmlmT3n07nMHeCfcOBH4rqYWhplzgNERER0fClN7Qhp6geALBgcgTkMkHiRETkblhwIqIL7DhWhRaLFTFB3pgaEyB1nF6LDfbBWJ0frDYRWSc4rY6IiIhoIIiiiG2HKyACmBDpj1GhvlJHIiI3xEm2RMNYb3eV+/GuCo7pdLckR0IQhta7VXPHh+OEvglfHq3CbVO5SwoRERGRqx2rNKKoxgSFTMD8iRFSxyEiN8URTkTURb3Jgm9O1gCwF5yGmrmdu6N8fbIGbe1WidMQERERDS/tVhu2H7bvZHxlYgiCfFQSJyIid8WCExF18dnhSnTYREyI9EdCmJ/UcfpsQqQ/ogK80NpuxXenaqWOQ0RERDSs/FBUh4aWdvhrFJgzOkzqOETkxlhwIqIu/pNfDgBYOIQWCz+fIAi4frx98XDHwudEREREdPlaLVbsLrCPhL9+vA4qBf+cJKKe8ScEETmV1bdg/5kGCAJwU9LQm07n4Nit7qvjVeiw2iROQ0RERDQ87D5ZjdZ2K8L91ZgyhDaWISJpsOBERE6fHrQvFp42Mhg6rUbiNP03Iy4IAd5KNLS0I/dMg9RxiIiIiIa8xhYLsk/XAQAyJuggG2IbyxDR4GPBiYgA2Le33TrEp9M5KOQyXDfWMa2uSuI0REREREPfV8er0WETER/igzHhQ2+dTyIafCw4EREA4HhlE05VN0MllyFjok7qOJfNMa3uy2N6iKIocRoiIiKioUtvaEN+qX3U+LwJOggc3UREvcCCExEBAP5zwD666dqxYdB6KSVOc/muSgyFl1KOsw2tOFxukDoOERER0ZD1xVE9RAATo7SIDvKWOg4RDREsOBERbDbRuX7TwilDd7Hw83mp5Lh2nH2r3m2HKiVOQ0RERDQ0FdU0o6CqCTIBmNu5EzARUW+w4EREyCmuR6WhDX4aBa4eEyZ1HJe5aXIEAOCzQ5WcVkdERETUR6Io4oujegDA9LgghPiqJU5EREMJC05EhE8P2qfT3TAxAhqlXOI0rnP1mDD4qOQob2xFXmmj1HGIiIiIhpTdJ2tQ1tAKpVzAtWOHz5uSRDQ4WHAi8nAdVhs+65xydkvy8JhO56BRynF959DvbYcqJE5DRERENHSIooi/7jgJAJgZHww/zdBf45OIBpdC6gBEJK2TVU0wtnXAX6NAUa0JJXUtUkdyqRsnR2LrgQpsP1yJpxeMh0zGXVWIiIiILiXreDUOnTVAJZfhytGhUschoiGIBSciD3egrBEAMHlEAGTDcIvbK0eHwE+jQJXRjH0l9UgdGSx1JCIiIiLJbcop7fE+URSxflchACBtVDB81fyzkYj6jlPqiDxYW7sVJ/RNAIDk6ABpwwwQtUKOjAk6ANytjoiIiKg3jlcaUWFog0ohw5UJIVLHIaIhigUnIg92tMKIDpuIUD81IrQaqeMMmBs7d6v7/EglOqw2idMQERERuS+bKOKr49UAgFmjguHN0U1E1E8sOBF5sIOd0+mSRgRAGIbT6RyuSAhBoLcStc0W5BTXSx2HiIiIyG0drTBCb2yDWiHDbI5uIqLLwIITkYcytrXjdE0zgOE7nc5BKZdh3kTHtDruVkdERETUHZsoIut4FQD7G3beKo5uIqL+Y8GJyEMdPmuACCAmyBtBPiqp4wy4GydHAgA+P6JHO6fVEREREV3gaIUR1U1maJQyXDGKo5uI6PKw4ETkoQ6dbQQATB6hlTbIIEmND0KIrwqNLe34vrBW6jhEREREbkUURXxd4Fi7KQReKrnEiYhoqGPBicgDNbRYUNbQCgHAxEjPKDgp5DLcMMm+ePinBzitjoiIiOh8p6qbUWFog1IuYNbIYKnjENEwwEm5RB7o8FkDACAuxAf+XkqJ01y+TTmlvWrnrbS/U7ftUCUmjwiASnFhzf3u1BiXZiMiIiIaCnYX1AAAZsQFcWc6InIJjnAi8kCHy+0Fp0lRnjG6ySE6yBvBPipYrDYcrTBIHYeIiIjILZypM6GkzgS5IGB2YqjUcYhomGDBicjD1DWbUd7YOZ3OwwpOgiA4d+TLL2uUNAsRERGRu/j6pH1005SYAGiHweh3InIPLDgReRjH6KZRob7w9cDh0o6C0+nqZhhb26UNQ0RERCSxSkMrTuibIAC4iqObiMiFWHAi8jDO6XQesjvdjwX7qhET5A0RwMHOnfqIiIiIPJVjdNPEKC1C/NQSpyGi4YQFJyIPUtNkRqWhDTIBmBDpL3UcyUyJCQAA5Jc2SpqDiIiISEp1zWbnZjJzRnN0ExG5FgtORB7kUHkjACAhzBfeKs+bTucwOSoAcpkAvbENlYZWqeMQERERSeLbU7UQAYwO90VkgJfUcYhomJG84LR+/XrExcVBo9EgNTUVe/fuvWj7Dz/8EGPHjoVGo8GkSZOwffv2LveLoohVq1YhIiICXl5eSE9Px6lTp7q0OXnyJG655RaEhITA398fs2fPxq5du1z+3IjcjeMdrMlRAdIGkZiXSo6xOj8AwAGOciIiIiIPZDJ3IK+0AQBwFUc3EdEAkLTg9MEHH2DFihVYvXo18vLykJSUhIyMDFRXV3fbfs+ePbjrrrtw3333IT8/HwsXLsTChQtx5MgRZ5u//OUveOWVV7Bhwwbk5OTAx8cHGRkZaGtrc7a58cYb0dHRgZ07dyI3NxdJSUm48cYbodfrB/w5E0lFb2xDdZMZcpmA8R48nc5hSufi4QfPNsImitKGISIiIhpkOcX16LCJiArwQnywj9RxiGgYkrTgtHbtWixbtgxLly7F+PHjsWHDBnh7e+Ott97qtv3LL7+MefPm4bHHHsO4cePw7LPPYurUqXj11VcB2Ec3rVu3Dk899RRuueUWTJ48Ge+++y4qKiqwdetWAEBtbS1OnTqFJ554ApMnT0ZiYiL+/Oc/o6WlpUvhimi4Ody5QPboMF9olHJpw7iB0To/eCnlMLZ14HRNs9RxiIiIiAaNucOKH4rqAABXJIRAEASJExHRcCRZwclisSA3Nxfp6ennwshkSE9PR3Z2drfnZGdnd2kPABkZGc72xcXF0Ov1XdpotVqkpqY62wQHB2PMmDF49913YTKZ0NHRgX/84x8ICwtDSkpKj3nNZjOMRmOXG9FQIYriebvTBUgbxk0oZDJM7typj9PqiMhT9XVpg8bGRjz44IOIiIiAWq3G6NGjL1jegIiktSmn9JK33285gmZzB/w1CkyK8sydi4lo4ElWcKqtrYXVakV4eHiX4+Hh4T1ObdPr9Rdt7/h4sTaCIOCrr75Cfn4+/Pz8oNFosHbtWmRmZiIwMLDHvGvWrIFWq3XeoqOj+/aEiSRU02RGbbMFcpmAcZ1rF9G5aXVHK4wwd1ilDUNENMj6urSBxWLB9ddfj5KSEnz00UcoKCjAG2+8gaioqEFOTkSXQxRFfH+6FgCQNjIYchlHNxHRwJB80fDBJooiHnzwQYSFheHbb7/F3r17sXDhQtx0002orKzs8byVK1fCYDA4b2VlZYOYmujyHKu0j8gbFeoDNafTOUUHeSPYRwWL1Yaj5Ry1SESepa9LG7z11luor6/H1q1bccUVVyAuLg5z5sxBUlLSICcnostRVGtCpaENSrmA6fFBUschomGsXwWnoqKiy/7GISEhkMvlqKqq6nK8qqoKOp2u23N0Ot1F2zs+XqzNzp07sW3bNmzevBlXXHEFpk6dir///e/w8vLCO++802NetVoNf3//LjeiocJRcBofwSHT5xMEASmx9pGNuZ27tBARuTtX9MP6s7TBp59+irS0NDz44IMIDw/HxIkT8ac//QlWK0eIEg0l3xfaRzdNjQmEt0ohcRoiGs76VXBKSEjANddcg3//+99ddn/rC5VKhZSUFGRlZTmP2Ww2ZGVlIS0trdtz0tLSurQHgB07djjbx8fHQ6fTdWljNBqRk5PjbNPS0gLA3qk6n0wmg81m69dzIXJnxtZ2nG1ohQBgXASn0/1YcnQABADFtSbUmyxSxyEiuiRX9MP6s7RBUVERPvroI1itVmzfvh1PP/00XnrpJTz33HM9fh+ugUnkXmqazDihb4IA4IpRIVLHIaJhrl8Fp7y8PEyePBkrVqyATqfD//zP/1xykcnurFixAm+88QbeeecdHD9+HL/61a9gMpmwdOlSAMDixYuxcuVKZ/uHH34YmZmZeOmll3DixAk888wz2L9/P5YvXw7APlrhkUcewXPPPYdPP/0Uhw8fxuLFixEZGYmFCxcCsBetAgMDsWTJEhw8eBAnT57EY489huLiYixYsKA/l4PIrR3X2zv3IwK94KdRSpzG/QR4qzAq1BcAkM9RTkQ0BLiqH9ZXNpsNYWFheP3115GSkoJFixbh97//PTZs2NDjOVwDk8i97Olcu2mMzg8hfmqJ0xDRcNevglNycjJefvllVFRU4K233kJlZSVmz56NiRMnYu3ataipqenV4yxatAgvvvgiVq1aheTkZBw4cACZmZnOd9tKS0u7rKs0a9YsbNq0Ca+//jqSkpLw0UcfYevWrZg4caKzzeOPP46HHnoI999/P6ZPn47m5mZkZmZCo9EAsE/ly8zMRHNzM6699lpMmzYN3333Hf7zn/9wDQIalo5VdE6ni+R0up5MjQ0AAOSVNsBmE6UNQ0R0Ca7oh/VnaYOIiAiMHj0acvm5tQDHjRsHvV4Pi6X7EaJcA5PIfbRYOpDX+eba7ASObiKigSeIonjZf12ZzWb8/e9/x8qVK2GxWKBSqfDTn/4Uzz//PCIiIlyR0+0YjUZotVoYDAau50Ru663vivG/nx2HVRTxm/TRCOU7Wd2ydNiw5vPjMHfYsPn+mZg5MljqSETkQsP9d3Z/+2GpqamYMWMG/va3vwGwj2CKiYnB8uXL8cQTT1zQ/sknn8SmTZtQVFTkXJrg5ZdfxvPPP4+KiopeZR3u/xZE7mBTTmm3x789VYPPj+gRodVg+TUJEATuTkfkKnenxkgdweVc8Tv7snap279/P379618jIiICa9euxaOPPorTp09jx44dqKiowC233HI5D09El+lUdTOsoogQXxWLTRehUsgwKco+Auyj3LMSpyEi6p3L7Yf1dWmDX/3qV6ivr8fDDz+MkydP4rPPPsOf/vQnPPjggwP6PIno8tlEETnF9QCAtJHBLDYR0aDo17YEa9euxdtvv42CggLccMMNePfdd3HDDTc43+2Kj4/Hxo0bERcX58qsRNRHJ/VNAIAx4Vws/FJSYgOx/0wDth+uxB9ungAfNXdtISL35Kp+2KJFi1BTU4NVq1ZBr9cjOTn5gqUNzt9kJTo6Gl988QV+85vfYPLkyYiKisLDDz+M3/3udwP2XInINU5VNaHeZIFGKcPkEQFSxyEiD9Gvv6hee+01/OIXv8C9997b41DtsLAwvPnmm5cVjoj6z2YTcbKqs+Ck47SFS4kJ8kawjwp1Jgs+P6LHHSkjpI5ERNQtV/bDli9f7tx85cd27959wbG0tDT88MMPfcpLRNL7ocg+uiklJhAqxWVNciEi6rV+FZx27NiBmJiYLu96AYAoiigrK0NMTAxUKhWWLFnikpBE1HdHK4xoMndAJZchLthb6jhuTxAETI0NxI5jVfgot4wFJyJyW+yHEVFf1JsszjchU7lOJRENon6Vt0eNGoXa2toLjtfX1yM+Pv6yQxHR5dtVUA0ASAjzhULOd7J6Y0p0AATB/i5gWX2L1HGIiLrFfhgR9cXe4jqIABLDfBHiyzU9iWjw9Ouv0J42tmtuboZGo7msQETkGo6CE9dv6r0AbxWuGGXfJnhLXrnEaYiIusd+GBH1VrvVhv1nGgAAqfEc3UREg6tPU+pWrFgBwD71ZNWqVfD2PjdNx2q1IicnB8nJyS4NSER9V9dsxoGyRgDAaB0LTn1xR8oIfFdYi4/yyvDQtQmQybiLCxG5B/bDiKivDpcb0GKxIsBLibER7BMS0eDqU8EpPz8fgP2dtcOHD0OlUjnvU6lUSEpKwqOPPurahETUZ9+cqoEoAhFaDbReSqnjDCkZE3TwVStQVt+KfSX1XOuAiNwG+2FE1Fc/FNUBAGbEB0Em8E00IhpcfSo47dq1CwCwdOlSvPzyy/D3585XRO7o25P2tT0Sw3wlTjL0eKnkuHFyBDbvK8NHuWdZcCIit8F+GBH1xdmGFpxtaIVcJmBaXJDUcYjIA/VrDae3336bnRwiNyWKIr4ttBecEsI4dLo/HDvUfXa4EiZzh8RpiIi6Yj+MiHojp6geADApSgtfdb82Jyciuiy9/slz2223YePGjfD398dtt9120bZbtmy57GBE1D8FVU2oaTJDo5QhNtj70ifQBVJiAxEX7I2SuhZkHtHj9s4CFBGRVNgPI6K+aGu34lB5IwAgNZ6jm4hIGr0uOGm1Wgid8361Wu2ABSKiy/PdKfvophnxwVDK+zWI0eMJgoA7UkbgxS9P4qPcsyw4EZHk2A8jor44UNaIdquIMD81YoL4BiQRSaPXBae3336728+JyL1801lwuioxROIkQ9utU0fgpR0nkV1Uh7L6FkSzs0ZEEmI/jIj6Yn+JfTrd9LggZ7GaiGiw9Wv4Q2trK1paWpxfnzlzBuvWrcOXX37psmBE1Hdt7VbsLbbvRnJlYqjEaYa2qAAvzBplXzB8S165xGmIiM5hP4yILqa8oRUVhjbIZQKmRAdIHYeIPFi/Vo+75ZZbcNttt+GBBx5AY2MjZsyYAZVKhdraWqxduxa/+tWvXJ2TiHoh90wD2tptCPNTY3S4L3LPNEgdacjZlFPq/DxS6wUA2LinGMG+qi7bCd+dGjPo2YiIAPbDiOji9nWObpoQ6Q9vLhZORBLq1winvLw8XHnllQCAjz76CDqdDmfOnMG7776LV155xaUBiaj3vu2cTjc7MYTDp11gQqQWaoUMDS3tOFPXcukTiIgGAfthRNQTk7kDB842AgBmxHGxcCKSVr8KTi0tLfDzs2+3/uWXX+K2226DTCbDzJkzcebMGZcGJKLe23O6s+CUwPWbXEGlkGFSlH1x3jyOFiMiN8F+GBH1ZNuhClg6bAj2USE+xEfqOETk4fo1xjIhIQFbt27Frbfeii+++AK/+c1vAADV1dXw9/d3aUAi6h1DazuOlBsAALNGseDkKlNjArH/TAMOlxtwY1IE1Aq51JGIyMOxH0bkuc6f+t+d13YXAuBi4UTkHvo1wmnVqlV49NFHERcXh9TUVKSlpQGwv8s2ZcoUlwYkot7ZW1wPmwiMDPGBTquROs6wERvsjWAfFSxWGw6dNUgdh4iI/TAi6pbe0IayhlbIBGBKTIDUcYiI+jfC6Y477sDs2bNRWVmJpKQk5/HrrrsOt956q8vCEVHvOabTpXXurEauIQgCpscFIfOoHvtK6jGd6yEQkcTYDyOi7jgWCx8X4Q8/jVLiNERE/Sw4AYBOp4NOp+tybMaMGZcdiIj6J/t0HQAWnAbClJgAfHlMj7MNrag0tCKic/c6IiKpsB9GROdrt9qQX2Zfb5JvjhGRu+hXwclkMuHPf/4zsrKyUF1dDZvN1uX+oqIil4Qjot6pazbjhL4JADBzJAtOruanUWJchD+OVhixr6QBNyex4ERE0mE/jIh+7GiFEW3tNgR4K5EQ5it1HCIiAP0sOP3yl7/E119/jXvuuQcRERFckI5IYjnF9iHUY3V+CPFVS5xmeJoeF4SjFUYcKGvA/Im6S59ARDRA2A8joh9z7KY7NSYQMv5MICI30a+C0+eff47PPvsMV1xxhavzEFE/ONZv4uimgZMQ5osAbyUaW87tBkhEJAX2w4jofI0tFpyuaQZgLzgREbmLfu1SFxgYiKAgzg0mcheO9Ztmcf2mASMTBEyLtXfiHItyEhFJgf0wIjpfXmkjRNh3Kg7yUUkdh4jIqV8Fp2effRarVq1CS0uLq/MQUR/VNptxusYEQQBmxPMPkIGUEhsEAUBJXQsKq5uljkNEHor9MCJyEEUReaX26XQpsRzdRETupV9T6l566SWcPn0a4eHhiIuLg1LZddvNvLw8l4Qjokvb17l+05hwPwR4812tgaT1UmKMzg8n9E34YF8pfr9gvNSRiMgDsR9GRA4ldS2oN1mgVsgwIVIrdRwioi76VXBauHChi2MQUX85FgxP5eimQTE9Lggn9E34OK8cj2aMgVohlzoSEXkY9sOIyMGxWPikKC1Uin5NXiEiGjD9KjitXr3a1TmIqJ/2dhacprPgNChGh/vBX6NAvcmCHceqcOPkSKkjEZGHYT+MiADA3GHF4c6NTDidjojcUb/L4I2NjfjnP/+JlStXor7e/gdvXl4eysvLXRaOiC7O0NqO43ojAGBGHAtOg0EuE5ydun9ln5E4DRF5KvbDiOhIuREWqw3BPirEBHlLHYeI6AL9GuF06NAhpKenQ6vVoqSkBMuWLUNQUBC2bNmC0tJSvPvuu67OSUTdyDvTAFEE4kN8EOavkTqOx5gRH4xvTtUip7gexyuNGBfhL3UkIvIg7IcREQDknjm3WLggCBKnISK6UL9GOK1YsQL33nsvTp06BY3m3B+5N9xwA7755huXhSOinm3KKcXb35cAAIJ9VNiUU3rBjQaG1kuJjAnhAIB3s0ukDUNEHof9MCKqazajpM4EAcCUGE6nIyL31K+C0759+/A///M/FxyPioqCXq+/7FBE1DsldSYAQFywj8RJPM+StDgAwCf55WhssUgbhog8CvthRJRX2ggASAjzhdZLefHGREQS6VfBSa1Ww2g0XnD85MmTCA0NvexQRHRplg4bzja0AADiQlhwGmwz4oMwVueHtnYb/m9/mdRxiMiDsB9G5Nlsooj8Uvt0uqlcLJyI3Fi/Ck4333wz/vjHP6K9vR0AIAgCSktL8bvf/Q633357nx5r/fr1iIuLg0ajQWpqKvbu3XvR9h9++CHGjh0LjUaDSZMmYfv27V3uF0URq1atQkREBLy8vJCeno5Tp05d8DifffYZUlNT4eXlhcDAQG4xTENOWUMLbKJ9elegN9/ZGmyCIODeWXEAgHf2nEGH1SZtICLyGK7shxHR0FNUY0Jjazs0ShnGcx1JInJj/So4vfTSS2hubkZoaChaW1sxZ84cJCQkwM/PD//7v//b68f54IMPsGLFCqxevRp5eXlISkpCRkYGqquru22/Z88e3HXXXbjvvvuQn5+PhQsXYuHChThy5IizzV/+8he88sor2LBhA3JycuDj44OMjAy0tbU523z88ce45557sHTpUhw8eBDff/897r777v5cCiLJlNQ6ptN5c6FIiSycEoVgHxXKG1vx2eFKqeMQkYdwVT+MiIamvM7RTUkjAqCU93vTcSKiASeIoij29+Tvv/8eBw8eRHNzM6ZOnYr09PQ+nZ+amorp06fj1VdfBQDYbDZER0fjoYcewhNPPHFB+0WLFsFkMmHbtm3OYzNnzkRycjI2bNgAURQRGRmJ3/72t3j00UcBAAaDAeHh4di4cSPuvPNOdHR0IC4uDn/4wx9w33339fepw2g0QqvVwmAwwN+f7yzQ4Lv2pd0oqjHhluRIpMYHSx3H49ydGgMAeCXrFNbuOIkJkf7Y9tBsFv+I3NBw/Z19uf0wKQzXfwuiwfLWd8X40/bj6LCJ+NWcUYgO8pY6EhHh3N8Gw4krfmcr+nqCzWbDxo0bsWXLFpSUlEAQBMTHx0On00EUxV7/sWWxWJCbm4uVK1c6j8lkMqSnpyM7O7vbc7Kzs7FixYouxzIyMrB161YAQHFxMfR6fZcOl1arRWpqKrKzs3HnnXciLy8P5eXlkMlkmDJlCvR6PZKTk/HCCy9g4sSJPeY1m80wm83Or7tbO4FosFg6bCir71y/iQuGS+qembF4bfdpHK0wYs/pOlyRECJ1JCIaxlzVDyOioenQWQM6bCLC/NQYEegldRwioovq0xhMURRx880345e//CXKy8sxadIkTJgwAWfOnMG9996LW2+9tdePVVtbC6vVivDw8C7Hw8PDe9xhRa/XX7S94+PF2hQVFQEAnnnmGTz11FPYtm0bAgMDcfXVV6O+vr7HvGvWrIFWq3XeoqOje/1ciVztcLkB7VYR3io5wvzUUsfxaIE+Kvx02ggAwD++KZI4DRENZ67shxHR0OSYTpcSG8gCMxG5vT4VnDZu3IhvvvkGWVlZyM/Px/vvv4/Nmzfj4MGD+Oqrr7Bz5068++67A5XVJWw2+8K+v//973H77bcjJSUFb7/9NgRBwIcfftjjeStXroTBYHDeysq4KxVJZ1+JvTgaF+zDzoYb+OWVIyETgG9O1uDQ2Uap4xDRMDUc+mFE1H+F1c0orW+BTACSowOkjkNEdEl9Kji9//77ePLJJ3HNNddccN+1116LJ554Au+9916vHiskJARyuRxVVVVdjldVVUGn03V7jk6nu2h7x8eLtYmIiAAAjB8/3nm/Wq3GyJEjUVpa2mNetVoNf3//Ljciqewt7iw4hXA6nTuIDvLGwilRAICXv7pwV0wiIldwZT+MiIaej3LPAgBGh/vBT8MdionI/fWp4HTo0CHMmzevx/vnz5+PgwcP9uqxVCoVUlJSkJWV5Txms9mQlZWFtLS0bs9JS0vr0h4AduzY4WzvWMPg/DZGoxE5OTnONikpKVCr1SgoKHC2aW9vR0lJCWJjY3uVnUhKVpvoHOEUz/Wb3MZD1yZCJgBZJ6o5yomIBoQr+2FENLR0WG3YkmcvOE2NCZQ4DRFR7/Rp0fD6+voL1kc6X3h4OBoaGnr9eCtWrMCSJUswbdo0zJgxA+vWrYPJZMLSpUsBAIsXL0ZUVBTWrFkDAHj44YcxZ84cvPTSS1iwYAE2b96M/fv34/XXXwcACIKARx55BM899xwSExMRHx+Pp59+GpGRkVi4cCEAwN/fHw888ABWr16N6OhoxMbG4oUXXgAA/OQnP+nL5SCSxAm9EU1tHVArZNBpNVLHoU7xIT5YOCUKW/LK8fJXp/DmvdOljkREw4yr+2FE5D425fQ80wIACvRNqG4yw1slx9gIv0FKRUR0efpUcLJarVAoej5FLpejo6Oj14+3aNEi1NTUYNWqVc7d4jIzM52dqdLSUshk5wZhzZo1C5s2bcJTTz2FJ598EomJidi6dWuX3eUef/xxmEwm3H///WhsbMTs2bORmZkJjebcH+YvvPACFAoF7rnnHrS2tiI1NRU7d+5EYCDfLSD3t69zOl1ssDfkMq7f5E4eujYRW/PLkXWiGvmlDZjCdyCJyIVc3Q8joqEjt3Ox8KToAChkfZqkQkQkGUEURbG3jWUyGebPnw+1uvtdscxmMzIzM2G1Wl0W0F0ZjUZotVoYDAau50SD6tfv5WL7YT3mjg/H1WPCpI5DP/JR7lnklTYgLtgby64ciZ/N5FRdIqkNl9/Zw6EfNlz+LYhc7WIjnFosHVjz+QlYbSKWX5OAyACvQUxGRL1xd2qM1BFczhW/s/s0wmnJkiWXbLN48eJ+BSGiSxNF8dyC4Vy/yS1dPz4ch842oqSuBccrm6SOQ0TDCPthRJ7pYFkjrDYREVoNi01ENKT0qeD09ttvD1QOIuqFoloTapstUClkGBHIDoc70nopMTshBLtP1iDzaCVW3zweSjmHvhPR5WM/jMgzOabTpcRyqj4RDS38K4hoCHGMbpoSHQAFixhu66rRofBRyVHbbLnkIqBEREREPak0tKKisQ1yQUDSiACp4xAR9Qn/YiUaQhwLhqfGB0mchC5Go5TjunH2zQ9e/LIANU1miRMRERHRUJR7xj66aVyEH3zUfZqcQkQkORaciIaQnM6C03QWnNzejPggRAZo0NTWgTWfH5c6DhEREQ0xHTYbDpQ1AuB0OiIamlhwIhoizja0oLyxFXKZgKkx7HS4O5kg4JakKAgCsCWvHDlFdVJHIiIioiHkRGUTWixW+GsUSAjzkzoOEVGfseBENETsK7GPbpoYpeWQ6iEiOsgbd82wb5H6+61H0NbuvluVE5FnWr9+PeLi4qDRaJCamoq9e/f26rzNmzdDEAQsXLhwYAMSeTDHdLopMYGQywSJ0xAR9R0LTkRDxN5ie6eD6zcNLY9njEGonxqF1c3461cnpY5DROT0wQcfYMWKFVi9ejXy8vKQlJSEjIwMVFdXX/S8kpISPProo7jyyisHKSmR5zG2tuNkVRMAIIUj24loiGLBiWiI2Ftsn5I1PY4Fp6EkwFuFP906CQDwxjdFzncriYiktnbtWixbtgxLly7F+PHjsWHDBnh7e+Ott97q8Ryr1Yqf/exn+MMf/oCRI0cOYloiz5Jf1ggRQGyQN0L81FLHISLqF87LIRoCapvNOF1jAgBMj+O7XEPN9ePDcdvUKGzJK8djHx7E9oevhEYpd96/Kae0V49zd2rMQEUkIg9jsViQm5uLlStXOo/JZDKkp6cjOzu7x/P++Mc/IiwsDPfddx++/fbbS34fs9kMs/ncTp1Go/HyghN5AFEUkXvGvpQCFwsnoqGMI5yIhoB9nbvTjdX5IcBbJXEa6o/VN05AuL8aRbUmvPBFgdRxiMjD1dbWwmq1Ijw8vMvx8PBw6PX6bs/57rvv8Oabb+KNN97o9fdZs2YNtFqt8xYdHX1ZuYk8QWl9C2qbLVDKBUyK0kodh4io31hwIhoCcjoLTjO4ftOQpfVW4s+3TQYAvPV9MfZ2/psSEQ0FTU1NuOeee/DGG28gJCSk1+etXLkSBoPBeSsrKxvAlETDg2P6/aQoLdTnjYgmIhpqOKWOaAhw7FDH9ZuGtmvGhuGn00bg//afxWMfHcTnD18JbxV/DBPR4AsJCYFcLkdVVVWX41VVVdDpdBe0P336NEpKSnDTTTc5j9lsNgCAQqFAQUEBRo0adcF5arUaajXXnyHqLUuHDYfKDQCAlFj2+4hoaOMIJyI3Z2xrx7FK+5oXHOE09D1143hEaDU4U9eCv2Ryah0RSUOlUiElJQVZWVnOYzabDVlZWUhLS7ug/dixY3H48GEcOHDAebv55ptxzTXX4MCBA5wqR+QiR8oNsHTYEOSjQlywt9RxiIguC99aJ3JzuSUNEEUgLtgb4f4aqePQZfLXKPH87ZOx+K292LinBBkTLhxJQEQ0GFasWIElS5Zg2rRpmDFjBtatWweTyYSlS5cCABYvXoyoqCisWbMGGo0GEydO7HJ+QEAAAFxwnIj6L7fUPp0uJTYQgiBInIaI6PKw4ETk5rh+0/Bz1ehQ3DUjGu/vLcPjHx/EL66Ih1rBNRqIaHAtWrQINTU1WLVqFfR6PZKTk5GZmelcSLy0tBQyGQfDEw2WumYzimtNEABMiQ6QOg4R0WVjwYnIzXH9puHpyRvG4ZuTtSirb0XmET1uSY6SOhIReaDly5dj+fLl3d63e/fui567ceNG1wci8mB5naObEsJ8uSsxEQ0LfNuKyI21WDpw6GwjACA1PljaMORSfp1T6wD7KLbC6maJExEREZFUbKKIvNJGAPbpdEREwwELTkRubF9JA9qtIqICvBAd5CV1HHKx2Ykh+PnMGADAlvyzMLdbJU5EREREUjhV1QxDazu8lHKMi/CXOg4RkUtwSh2Rm9mUU+r8PPOIHgAQ7q/B+3vLpIpEl+H8f8/ujAr1RaC3Eg0t7fj8qB4LObWOiIjI4ziWUJgaEwClnGMCiGh44E8zIjdWVGufZjUy1EfiJDRQ1Ao5bps6AgCwr7geZfUtEiciIiKiwVRlbMMJvREAMI1rdhLRMMKCE5Gbamu3oryhFQAwMoQFp+FsVKgvpkQHQATwn4PlsImi1JGIiIhokHy4vww2EYgN9ka4v0bqOERELsOCE5GbKqk1QQQQ7KPiTiUeYN5EHTRKGSoa27C3uF7qOERERDQIbDbRuWzCDI5uIqJhhgUnIjd1uobT6TyJn0aJ68frAABfHtPDZO6QOBERERENtG8La1He2AqNUoaJUVqp4xARuRQLTkRuqqjWBAAYGeorcRIaLKnxQdD5a9DWbsPugmqp4xAREdEAe79zc5EpMYFcLJyIhh3uUkfkhlrMHdAb2gBw/SZPIhMEzJ+ow9t7SvBDUT1mjgxGsK9a6lhERETUTxfbrdbY1o4vj9l3JJ7O6XRENAyxjE7khoo6128K81PDT6OUOg4NosRwPySG+cIqivjyWJXUcYiIiGiA5J1pgE0EYoK8oeNi4UQ0DLHgROSGzk2n4+gmTzRvog4CgMPlBpxtaJE6DhEREbmYTRSxr8S+SQgXCyei4YoFJyI3VORYMDyE6zd5ogitF5KjAwAAWce5lhMREdFwc7qmGQ0t7dAoZZg0gouFE9HwxIITkZtpamtHdZMZArh+kye7dmwYZAJQUNWEsnqOciIiIhpOcorso5uSo7lYOBENX/zpRuRmijun0+m0Gnirua6/pwr2VTtHOe08wVFOREREw0VjiwXHK40A7DvUEhENVyw4EbmZ0zWd6zdxdJPHu2bMuVFOXMuJiIhoeNhbXA8R9rU6w7lYOBENYyw4EbkZ5/pNoVy/ydOdP8ppV0GNtGGIiIjosnVYbc7FwmfGB0uchohoYLHgRORGKg2tqDNZIACI5wgnAjBndBgEACcqjSisbpY6DhEREV2Gw+UGmCxWaL2UGBfhL3UcIqIB5RYFp/Xr1yMuLg4ajQapqanYu3fvRdt/+OGHGDt2LDQaDSZNmoTt27d3uV8URaxatQoRERHw8vJCeno6Tp061e1jmc1mJCcnQxAEHDhwwFVPiahfsk/XAQCiAr2gUcolTkPuINRPjXER/hABvPFNkdRxiIiI6DL8UGTv682ID4JcJkichohoYElecPrggw+wYsUKrF69Gnl5eUhKSkJGRgaqq7tfJHfPnj246667cN999yE/Px8LFy7EwoULceTIEWebv/zlL3jllVewYcMG5OTkwMfHBxkZGWhra7vg8R5//HFERkYO2PMj6otvTtqnTY3idDo6z1WJIQCAT/LLUWW88OcYERERub+zDS0oa2iFXBAwLTZQ6jhERANO8oLT2rVrsWzZMixduhTjx4/Hhg0b4O3tjbfeeqvb9i+//DLmzZuHxx57DOPGjcOzzz6LqVOn4tVXXwVgH920bt06PPXUU7jlllswefJkvPvuu6ioqMDWrVu7PNbnn3+OL7/8Ei+++OJAP02iS7LZRHx7qhYAkBjOghOdExPsg9hgb1isNrz1fbHUcYiIiKgffiiyr900aYQWfhqlxGmIiAaepAUni8WC3NxcpKenO4/JZDKkp6cjOzu723Oys7O7tAeAjIwMZ/vi4mLo9foubbRaLVJTU7s8ZlVVFZYtW4Z//etf8Pb2vmRWs9kMo9HY5UbkSscqjagzWaBSyBATdOnXJHmWqxJDAQCbckphMndInIaIiIj6wmTuwKGzjQCAmfFB0oYhIhokkhacamtrYbVaER4e3uV4eHg49Hp9t+fo9fqLtnd8vFgbURRx77334oEHHsC0adN6lXXNmjXQarXOW3R0dK/OI+qtr8+bTqeQST74kNzMGJ0f4oK90dTWgS355VLHISIioj7IPdOADpuIyAANovnGIhF5CI/8q/Zvf/sbmpqasHLlyl6fs3LlShgMBuetrKxsABOSJ3IUnBLDOJ2OLiQTBCyZFQcA2Ph9MURRlDYQERER9YpNFJFTbF8sfGZ8MASBi4UTkWeQtOAUEhICuVyOqqqqLserqqqg0+m6PUen0120vePjxdrs3LkT2dnZUKvVUCgUSEhIAABMmzYNS5Ys6fb7qtVq+Pv7d7kRuUpTWzvyzjQAAEaH+0mchtzVHSkj4KtW4HSNybneFxEREbm3YxVGNLS0w0spx+QRAVLHISIaNJIWnFQqFVJSUpCVleU8ZrPZkJWVhbS0tG7PSUtL69IeAHbs2OFsHx8fD51O16WN0WhETk6Os80rr7yCgwcP4sCBAzhw4AC2b98OwL5j3v/+7/+69DkS9cae03XosImID/FBkI9K6jjkpvw0StyRMgIAsHFPibRhiIiIqFe+L7S/SZQ6MggqhUdOMCEiD6WQOsCKFSuwZMkSTJs2DTNmzMC6detgMpmwdOlSAMDixYsRFRWFNWvWAAAefvhhzJkzBy+99BIWLFiAzZs3Y//+/Xj99dcBAIIg4JFHHsFzzz2HxMRExMfH4+mnn0ZkZCQWLlwIAIiJiemSwdfXPoVp1KhRGDFixCA9c6JzHNPp5owOlTgJubsls+LwTnYJdp6oRnGtCfEhPlJHIiIioh6U1bfgTH0L5IKAmSODpY5DRDSoJC84LVq0CDU1NVi1ahX0ej2Sk5ORmZnpXPS7tLQUsvMWUJ41axY2bdqEp556Ck8++SQSExOxdetWTJw40dnm8ccfh8lkwv3334/GxkbMnj0bmZmZ0Gg0g/78iC5FFEXsOlENwF5wqjS0SZyI3Fl8iA+uGROGnSeq8c6eEjxz8wSpIxEREVEPvusc3ZQUrYW/RilxGiKiwSWIXHm2X4xGI7RaLQwGA9dzostypNyAG//2HbyUcuSvuh5b8rgDGXXv7lT76MxvTtZg8Vt74atWIHvltfBjB5boovg7233w34I8ydmGFlz1l12wicBD1yYgQusldSQiGiCOfvpw4orf2ZxETCSxr47bF7i/MjEEGqVc4jQ0FFyZGIKEMF80mzvwUe5ZqeMQERFRN97ZUwKbCIwK9WGxiYg8EgtORBLLOm6fTpc+LlziJDRUCIKAJbPiAHR2Zm0cqEpEROROmtrasXlvGQBgdkKIxGmIiKQh+RpORJ5Mb2jD4XIDBAG4ZmyY1HFoCLltShT+knkCJXUt2H2yGteOZcGSiIhoMG3KKe3xvu8La9Fk7kCorxqJ4X6DmIqIyH1whBORhLJO2KfTJY0IQKifWuI0NJT4qBW4c3o0AGDjnjMSpyEiIiIHq03EntP2xcKvSAiBTBAkTkREJA0WnIgk5JhOd/14jk6hvlucFgdBsC8iXljdLHUcIiIiAnCs0oiGlnZ4q+SYEhMgdRwiIslwSh2RRJrNHc6tcq8bx+l0dGndDd0fq/PH8Uojntp6GDcnRQEYnrtkEBERDQWiKOKbkzUAgNT4ICjlfH+fiDwXfwISSWTniWpYOmyID/HBGM7tp35KGxkMAMg704i2dqvEaYiIiDzb6RoTyhtboZQLSBvFxcKJyLOx4EQkke2HKgEA8yfqIHBuP/XTqFAfhPmpYbHakHumQeo4REREHm33SftyCdNig+Cr5mQSIvJsLDgRScBk7sCuAnuH5IZJERKnoaFMEASkjbKPcsouqoNNFCVORERE5JnK6ltQVGOCTACuTOToJiIiFpyIJLCroBrmDhtigrwxIdJf6jg0xE2JDoRGKUO9yYKT+iap4xAREXmk3Z1rNyVHByDAWyVxGiIi6bHgRCSBzw/rAdhHN3E6HV0ulUKG6bFBAOyjnIiIiGhwVRnbcLzSCAHAVYmhUschInILLDgRDbJWixU7Tzim0+kkTkPDxcyRwRAAnKpuRmE1RzkRERENJsfOdOMi/BHmr5E4DRGRe2DBiWiQ7ThehdZ2K6KDvDApSit1HBomAn1UGBdhn565cU+JtGGIiIg8SIPJgoNnGwEAV4/h6CYiIgcWnIgG2Sd5ZwEAC5OjOJ2OXMqxePjHueVobLFInIaIiMgzfFtYA5sIJIT6YkSgt9RxiIjcBgtORIOopsmMb07VAgAWTomSOA0NNyNDfBCh1aC13Yr3ckqljkNERDTsNbW1Y39JAwBgDkc3ERF1wYIT0SD678EKWG0ikkZoMSrUV+o4NMwIgoDZCfZtmDfuKYG5wypxIiIiouHtm5M16LCJiA70wsgQH6njEBG5FRaciAbRJ/nlAIBbObqJBsjkEQHQ+WtQ02TGfw5USB2HiIho2DK2tSOnuB4AkD4unEslEBH9CAtORIOksLoJh8sNUMgE3JQUKXUcGqbkMgG/mB0HAHjjmyKIoihtICIiomHq687RTTFB3kgI48h1IqIfY8GJaJB8mGtfLHzO6FAE+6olTkPD2Z0zYuCrVuBUdTOyjldLHYeIiGjYqTK2YV/n6KbrxoVxdBMRUTdYcCIaBJYOGz7aby84/XR6tMRpaLjz1yjx85mxAIBXdxVylBMREZGLvbb7NDpsImKDvJHAdTmJiLrFghPRIPjymB51Jgv8NApUG83YlFPa443IFe6bHQ+1QoYDZY3IPl0ndRwiclPr169HXFwcNBoNUlNTsXfv3h7bvvHGG7jyyisRGBiIwMBApKenX7Q90XClN7Rh0157n+06rt1ERNQjFpyIBoGjkDQtNhByGTslNPBC/dS4s3M03frdhRKnISJ39MEHH2DFihVYvXo18vLykJSUhIyMDFRXdz8Vd/fu3bjrrruwa9cuZGdnIzo6GnPnzkV5efkgJyeS1t93F8LSYUNcsDdGhXJnOiKiniikDkA03BXXmrDndB0EANPigqSOQx5k2VUj8V5OKb4vrENeaQOmxgRKHYmI3MjatWuxbNkyLF26FACwYcMGfPbZZ3jrrbfwxBNPXND+vffe6/L1P//5T3z88cfIysrC4sWLByUz0WC42IhzQ2s73svh6CYiot7gCCeiAba5c8h1YrgvAr1VEqchTzIi0Bu3TokCAPx1x0mJ0xCRO7FYLMjNzUV6errzmEwmQ3p6OrKzs3v1GC0tLWhvb0dQUM9vppjNZhiNxi43oqFsV0E1rDYRccE+GBnC0U1ERBfDghPRAGqxdGDzvjIAQGp8sMRpyBP9v+sSoZAJ+PZULfaV1Esdh4jcRG1tLaxWK8LDw7scDw8Ph16v79Vj/O53v0NkZGSXotWPrVmzBlqt1nmLjubGGTR01TaZsb/zd+n14zm6iYjoUlhwIhpAH+eehaG1HbHB3hij85M6Dnmg6CBv/GSa/Q+8l74skDgNEQ0Xf/7zn7F582Z88skn0Gg0PbZbuXIlDAaD81ZWVjaIKYlc68vjVbCJwFidH+I5uomI6JJYcCIaIDabiLe+LwEALJ0VBxnfBSOJPHRtAlRyGX4oqseewlqp4xCRGwgJCYFcLkdVVVWX41VVVdDpdBc998UXX8Sf//xnfPnll5g8efJF26rVavj7+3e5EQ1FZfUtOFJugABg7viL/zdCRER2LDgRDZCdJ6pRXGuCn0bhHGFCJIXIAC/cNcP+Gnw+8wREUZQ4ERFJTaVSISUlBVlZWc5jNpsNWVlZSEtL6/G8v/zlL3j22WeRmZmJadOmDUZUIsmJoogvjtqnmk6JCYBO2/OoPiIiOoe71BENkDe/KwYA3D0jBj5q/qdGg6e73XUiA7ygUshw8KwBK7ccxp9vv/ioBCIa/lasWIElS5Zg2rRpmDFjBtatWweTyeTctW7x4sWIiorCmjVrAADPP/88Vq1ahU2bNiEuLs651pOvry98fX0lex5EA+1UdTOKak2QywRcNy780icQEREAjnAiGhB5pQ3ILqqDQiZg8aw4qeMQwU+jxFWJIQCAL47qYe6wSpyIiKS2aNEivPjii1i1ahWSk5Nx4MABZGZmOhcSLy0tRWVlpbP9a6+9BovFgjvuuAMRERHO24svvijVUyAacLbzRjeljQzmjsNERH3AYRdEA+DVnYUAgFunRCEqwEviNER2sxNCkVNcj4aWdvwr+wx+eeVIqSMRkcSWL1+O5cuXd3vf7t27u3xdUlIy8IGI3Myhs42oNLRBrZDh6tGhUschIhpSOMKJyMWOlBuw80Q1ZALw62sSpI5D5KRSyJDeORXglaxTqGs2S5yIiIjIfXVYbdhxzL6w/pzRofDmEglERH3CghORizlGN92UFMktc8ntpMQGIkKrgbGtAy9+WSB1HCIiIrf1fWEtGlra4adRYNaoEKnjEBENOSw4EbnQ8UojMjvn+S/n6CZyQzJBwM1JkQCAzfvKcLCsUdpAREREbsjY2o5dBTUAgHkTdFAp+GcTEVFfucVPzvXr1yMuLg4ajQapqanYu3fvRdt/+OGHGDt2LDQaDSZNmoTt27d3uV8URaxatQoRERHw8vJCeno6Tp065by/pKQE9913H+Lj4+Hl5YVRo0Zh9erVsFgsA/L8yHO8+IV9xMiCyRFIDPeTOA1R92KDfXDrlCiIIrDq06Ow2USpIxEREbmVL47qYbHaEB3ohaToAKnjEBENSZIXnD744AOsWLECq1evRl5eHpKSkpCRkYHq6upu2+/Zswd33XUX7rvvPuTn52PhwoVYuHAhjhw54mzzl7/8Ba+88go2bNiAnJwc+Pj4ICMjA21tbQCAEydOwGaz4R//+AeOHj2Kv/71r9iwYQOefPLJQXnONDztL6lH1olqyGUCfnv9aKnjEF3Uyvlj4atW4GBZI97LOSN1HCIiIrdRWt+C/M4RwDclRUImCNIGIiIaogRRFCV9azs1NRXTp0/Hq6++CgCw2WyIjo7GQw89hCeeeOKC9osWLYLJZMK2bducx2bOnInk5GRs2LABoigiMjISv/3tb/Hoo48CAAwGA8LDw7Fx40bceeed3eZ44YUX8Nprr6GoqKhXuY1GI7RaLQwGA/z9/fv6tGmYEUURP/1HNvaVNOCuGdFYc9vkC9psyimVIBlR9+5OjcE7e0qw+tOj8FUrsGPFVYjQckdFGp74O9t98N+C3J3NJuKqF3bhbEMrUmICcXvKCKkjEdEQcHdqjNQRXM4Vv7MlHeFksViQm5uL9PR05zGZTIb09HRkZ2d3e052dnaX9gCQkZHhbF9cXAy9Xt+ljVarRWpqao+PCdiLUkFBQT3ebzabYTQau9yIHHYVVGNfSQPUChn+33WJUsch6pWfz4zF1JgANJs78PTWI5D4/QciIiLJfZx3FmcbWqFWyDB3QrjUcYiIhjRJ9/asra2F1WpFeHjXH+bh4eE4ceJEt+fo9fpu2+v1euf9jmM9tfmxwsJC/O1vf8OLL77YY9Y1a9bgD3/4w8WfEHmkdqsNv/voMABgRnwQdp2okTgRUe/IZQL+fPtkLHjlW3x1vBr/PVTpXFCciIjI0zS1teP5TPt6nNeMCYOfRilxIiKioU3yNZykVl5ejnnz5uEnP/kJli1b1mO7lStXwmAwOG9lZWWDmJLc2Xs/nEFNsxk+KjmuGRMmdRyiPhkd7ocHO3dUfHrrEegNbRInIiIiksbLX51CbbMZwT4qzEoIljoOEdGQJ2nBKSQkBHK5HFVVVV2OV1VVQafTdXuOTqe7aHvHx948ZkVFBa655hrMmjULr7/++kWzqtVq+Pv7d7kRNbZY8Nev7Dsgpo8Ph0YplzgRUd89eE0CJkVpYWhtx+MfH+LUOiIi8jiHzjbire+LAQA3To6EQubx78sTEV02SX+SqlQqpKSkICsry3nMZrMhKysLaWlp3Z6TlpbWpT0A7Nixw9k+Pj4eOp2uSxuj0YicnJwuj1leXo6rr74aKSkpePvttyHjLxXqh7/uOAlDazt0/hpMi+15DTAid6aUy/DXRUlQKWT45mQN/v0Dd60jIiLP0W614XcfH4ZNBG5JjsQYnZ/UkYiIhgVJ13ACgBUrVmDJkiWYNm0aZsyYgXXr1sFkMmHp0qUAgMWLFyMqKgpr1qwBADz88MOYM2cOXnrpJSxYsACbN2/G/v37nSOUBEHAI488gueeew6JiYmIj4/H008/jcjISCxcuBDAuWJTbGwsXnzxRdTUnFtzp6eRVUQ/dqTcgH91/mF+w6QIyGXcMpeGroQwPzwxbyz+uO0Ynv3sOKbFBWFcBEdyEhHR8NHTjsG7C6pxvNIIb5UcEyK1g5yKiGj4krzgtGjRItTU1GDVqlXQ6/VITk5GZmamc9Hv0tLSLqOPZs2ahU2bNuGpp57Ck08+icTERGzduhUTJ050tnn88cdhMplw//33o7GxEbNnz0ZmZiY0Gg0A+4iowsJCFBYWYsSIrludcioJ9YbNJuLp/xyBTQRunByBhDBfqSMRXbZ7Z8Xhu8Ja7DxRjQc35eG/y2fDRy35rwkiIqIBU9tkxs4T1QCABZMi4Mvfe0RELiOIrLD0i9FohFarhcFg4HpOHuiDfaX43ceH4aOSI+u3Vzs7KkRDxd2pMd0erzdZcMPL30JvbMOtU6Kw9qdJEASO3qOhjb+z3Qf/LUhKPx7hZBNFvPldMYprTUgM88W9s+L4O4+I+qWnvvVQ5orf2SzhE/VRbbMZaz4/AQD4zfWjodNqJE5E1Hc9TSsAgJuSIvHPb4vwSX45psQEYHFa3OAFIyIiGiS5JQ0orjVBKRewMDmKxSYiIhdjwYnoIrr7o3zzvlI0trQjQquBWiG/6B/uRENRfIgP5k3U4fMjevzxv8cwVuePGfFcFJ+IiIaPxhYLPj9aCQCYO16HQB+VxImIiIYfbs1G1AfHK404dNYAmQDcNnUEFwqnYWt2Qggmj9Ciwybi1+/lobyxVepIRERELmETRXyUexZt7TZEB3ohbVSw1JGIiIYlFpyIeqmt3Yr/HCgHYP9jPCrAS+JERANHEATcNmUExur8UNtsxn0b96GprV3qWERERJft+8JaFHVOpfvJtGjIOJWOiGhAsOBE1EuZR/QwtnUg2EeF68aFSx2HaMCpFDK8ee90hPiqcULfhIfez0eH1SZ1LCIion6rNLTiy2NVAIAFkyIR4quWOBER0fDFghNRLxTVNmNvST0A4NapUVDK+Z8OeYaoAC+8uWQaNEoZdhfU4KmtR8DNTYmIaCgyt1vx/t5SWG0ixur8MD0uUOpIRETDGhcNJ7qEdqsNn+TZp9LNiAvCyBBfiRMRDR7Hovh3TB2B93JKsXlfGfSGNsydoHO2GY7bwBIR0fAiiiI+OVCO2mYLtF5K3DF1BHelIyIaYBymQXQJXx7Vo85kgb9GgXkTdZc+gWgYGh+pxcLkKADA7pM1+PZUjcSJiIiIem/T3lLnxi93To+Gt5rvuxMRDTQWnIgu4nRNM74/XQcAuHVKFDRKucSJiKQzPT4Ic8fb1y/7/Igee07XSpyIiIjo0vaX1OOZT48CAOaO1yE22EfiREREnoEFJ6IeGFrb8VHuWQD2qXRjdP4SJyKS3pzRobh6TCgAYNuhSmSz6ERERG5Mb2jDA//OQ7tVxMRIf1yZGCJ1JCIij8GCE1EPnvn0KAyt7Qj2UWH+JE6lIwIAQRBw/bhwXJVoLzr991Al1u8q5ELiRETkdlosHbj/X/tR22zGWJ0fbk/huk1ERIOJk5eJuvHZoUp8kl8OAcBPpkVDreBUOiIHQRCQMSEcchmwq6AGL3xRgMYWC1bOHweZjB15IiIafI5NLhxsooh//3AGJ/RN8FbJcePkSPbniIgGGUc4Ef1IlbENv996GABw9ZhQxAR5S5yIyP0IgoDrx+twQ+dC+m98W4zl7+ehrd0qcTIiIvJ0oihi26EKnNA3QSETcM/MWAT5qKSORUTkcVhwIjqPzSbisY8OobGlHROj/HHt2HCpIxG5tdmJoVj70yQo5QK2H9Zj0es/oMrYJnUsIiLyYFknqvFDUb1zpDoXCScikgYLTkTnee3r0/jmZA3UChn++tNkyDk9iOiSbps6Av++LxUB3kocLGvEgle+xZ5CLiZORESD79tTNdh5ohoAsGByBCZFaSVORETkuVhwIuqUfboOL31ZAAD44y0TkBjuJ3EioqEjdWQwtv76CozV+aG22YKfv5mDv+44iXarTepoRETkIfacrsXnR/QAgLnjwzFrFHekIyKSEgtORACqm9rw0Pv5sInA7VNH4KfToqWORDTkxIX44JNfX4E7UkbAJgIvZ53CHa/twemaZqmjERHRMPfNyRpsO1QJAJgzOhRzRodKnIiIiFhwIo9ntYn4f+/no7bZjDHhfnhu4URumUvUT14qOV64YzJevjMZ/hoFDp41YP66b7Huq5NcUJyIiFxOFEW89GUBMo/aRzZdOzYMc8eHsy9HROQGFFIHIJKKY/vcL4/p8UNRPVQKGW6YFIFP8sslTkY0tAmCgFuSozAjPghPfHwYX5+swbqvTmFrfjkezRiDGyZGQMb10YiI6DK1W2144uPD+DjvLAD7NLqrx4RJnIqIiBxYcCKPdqLSiN0FNQCA26ZEIdRPLXEioqHHUbztztzx4YjQavDZoUqU1LVg+aZ8TIoqwu/mjcXsRK6tQURE/dNgsmD5+3n4vrAOcpmAW5IiMS0uSOpYRER0HhacyGNVGlqxeX8ZACA1PgiTRwRIG4hoGBIEAZNHBGBMuB8Mbe1445siHC434Odv5uCKhGA8fN1oTI8L5NQHIiLqtRN6I5a9ux9l9a3wVsmx/u6pqDS0SR2LiIh+hAUn8kjVxja8m30Glg4bRob64MbJkVJHIhrW1Eo5Hpkdj5/PjMX6XYV474dSfF9Yh+8LszF5hBa/vHIk5k/UQSnn0oJERHTO+aNoRVFEXmkDPj1YgXariEBvJe6ZGcdiExGRm2LBiTyOoaUdS97eB0NrO0J81fjZjFjIuZ4M0YBz/NGQGOaHh69LxO6TNcgvbcChswb8v/fzofVSIm1kMJ67dSJCfDm9lYiIzmlrt+LTgxU4UNYIAEgM88Wi6dHwVvHPGSIid8Wf0ORRTOYOLN24F8crjfBVK7AkLRZeKrnUsYg8TqCPCrdOicL148Oxt7gO2UX1MLS2I/OoHl8dr8J148KwaHo0rkoMhYKjnoiIPNrJqiZ8kl8OQ2s7ZAKQPi4cV40OhYzTsYmI3BoLTuQxTOYO/PKd/cgrbYTWS4nFabEI5igKIkn5qhW4dmw4rkwMxcGyRuwrqUdZQyu+OFqFL45WQeevwS3JkbgpKRITIv251hMRkQepazbjo9wy5JU2AgCCfVS4I2UEYoN9pA1GRES9woITeYQGkwX3btyHg2WN8FHJsXHpdByvbJI6FhF1UsplmBYXhGlxQUiJDcQH+8rwSf5Z6I1t+Mc3RfjHN0UYGeKDG5MicXNSJBLCfKWOTEREA6TdasPmvaV48cuTMLS2AwDSRgUjY7wOKgVHvRIRDRUsONGwV1rXgvve2YdT1c0I9Fbi7aUzkBwdwIITkZsao/PDqpvG43fzx2DXiWp8erACWcerUVRrwitZp/BK1ilEaDWYHKXFhCjtRdd7ujs1ZhCTExHR5bDZRGw7XImXvizAmboWAECEVoNbkqMQE+QtcToiIuorFpxoWNtVUI2H38+Hsa0DOn8N/v3LGUgI85M6FhFdxPk7EgHA7IRQTI8NwnG9EQfLDDhV3YRKQxsqDW344lgVwv3VmBCpxYRIf+j8NZx2R0Q0RDh+3ouiiMLqZnxxVI+Kzh3nfNQKXDs2DDPigri5CxHREMWCEw1LrRYrXvqyAG9+XwxRBKbEBOC1n6VAp9VIHY2I+kGtlCM5OhDJ0YFosXTgaIURh88aUFTbjCqjGVXGauw8UY0gHxXGR/hjQqQ/ovluOBGRW7PaRBwub8R3hbWoaLQXmtQKGa5MDMEVCSFQK7ixCxHRUMaCEw0roihid0ENVn96FKX19qHYP58Zg1U3TuCcf6JhwlulwPS4IEyPC0KLpQMn9E04VmHEyaom1Jss+K6wFt8V1sJPo8DxSiOuHhOGtFHB8FXzVx4RkTtobLHg/b1leG13IYxtHQAApVzAjLggXD0mDD78eU1ENCzwpzkNC6Io4oeievx1x0nsLakHYJ/z/6dbJ+GasWESpyOigeKtUmBqTCCmxgTC0mHDyaomHK0w4IS+CU1tHXgvpxTv5ZRCIRMwNSYQV40OQdqoYEyI1EKj5DvnRESDpd1qw9cFNfg47yyyjlfDYrUBAPzUCswcFYwZcUEsNBERDTP8qU5DWr3Jgu2HK/HvH87ghN6+CLhKIcOStFj8v+sS4adRSpyQiAaLSiHDxCgtJkZp0WG1oajWhA6bDd+eqsWZuhbsLal3FqQVMgHjIvwxJSYASSMCMEbnh4QwXxahiIhcwLE2k9UmoqTOhGMVRhw62wiTxepsE6HV4IpRIZg8QguFnKPQiYiGIxacaEgRRREnq5rx7akafH2yBntO18FqEwEAGqUMt08dgeXXJiBC6yVxUiKSkkIuw+hwP+cudWfqTPj2VC2+PVWD3DONqG0243C5AYfLDQDOAAAEAYgJ8kZimB9GhfkgPtgHcSE+iA/xQZifmouRExH1Ql2zGQfKGnC8sgmnqpvQ1m5z3uerViA5OgBTYgLYVyMi8gAsOJHbEkURFYY2HD5rwKGzjTjU+dEx199hQqQ/bp0ShZ+kREPrzRFNRHSh2GAfxAb74OczYyGKIsobW5Ff2ogDZY04fNaAk9VNaGxpx5m6Fpypa8FXx7ue762SQ+ulRLCPCsG+aoT4qhDso0awrwq+akWXYpSjyEVENNzZbCLO1Ldgf0k99pc0YN+ZehTVmLq08VbJMVbnh0lRWiSE+XHHOSIiD+IWBaf169fjhRdegF6vR1JSEv72t79hxowZPbb/8MMP8fTTT6OkpASJiYl4/vnnccMNNzjvF0URq1evxhtvvIHGxkZcccUVeO2115CYmOhsU19fj4ceegj//e9/IZPJcPvtt+Pll1+Gr6/vgD5XulBbuxVn6lpwuqYZp6ubcbqmGYU1zSiqMaHlvKHXDhqlDDPigzE7IRhzx+sQF+IjQWoiGqoEQcCIQG+MCPTGTUmRAOy/N2qbLThV3YRTVc0orjWhuNaEkjoTzja0osViRYvFisrO7brPp1bInIWoYF8VVAoZ4kO8ERfsgyAfFUdGkVtzdR+Mhqe2divKG1txtqEVp6ubUaBvwomqJpyqauq2r6bz12CMzg/jdH4YEeQNGX8OEhF5JEEURVHKAB988AEWL16MDRs2IDU1FevWrcOHH36IgoIChIVduNjznj17cNVVV2HNmjW48cYbsWnTJjz//PPIy8vDxIkTAQDPP/881qxZg3feeQfx8fF4+umncfjwYRw7dgwajQYAMH/+fFRWVuIf//gH2tvbsXTpUkyfPh2bNm3qVW6j0QitVguDwQB/f3/XXZBhpK3dioYWCxpb2tHY0o7aZjMqDa2oaGxDRWMrKjo/rzdZenwMhUxAYrgfkkZo0dZuw4hAL4T7a/juGBENmg6bDY2mdtSazKhrtqC22Yw6kwV1zWY0trTjYr9E/TQKxIf4IDrQG8G+KgR6q5wffdRyaBRyqJVyaJQyqOQynPubzP6J4+vzf+LZZxGLEEX756Lzc/tHexv75yLOP37eOaLovA+d7VQKGbyUcnip5PaPnZ+rFbIhXzTj7+zuDUQf7FL4byE9S4cNzeYONLd1wNjW7vy8yWzvrzl+ztU2W1DTbEZFYytqmsw9Pp5CJiAqwAuxwT6IC/ZGTLA3vFVu8Z42EdGgGY4j3F3xO1vyglNqaiqmT5+OV199FQBgs9kQHR2Nhx56CE888cQF7RctWgSTyYRt27Y5j82cORPJycnYsGEDRFFEZGQkfvvb3+LRRx8FABgMBoSHh2Pjxo248847cfz4cYwfPx779u3DtGnTAACZmZm44YYbcPbsWURGRl4y90B1mL4+WYPmtg7YRPHczQZYRRGiKMIm2hdgPP9zxx8T7TYbOqwiOmwiOqw2dNhEtFsdx87dd/6x9h/d12G1obrJ7HxcW+cfMY4/NRx/dGi9lPZjgv0PIRGAud0Gc4cN5nYr2jqsaLf2/qWlUcoQ6qtGqJ8GoX7qzs/VCPJRsbhERG6rw2pDvcmCOlNnIarZAoVcQEmtCRXdjIYaigQBXQpQjo8aZdfClPNrlb1wpZTLIJcJkAmC/aNMgFwQIBPg/NxxXCYAAgTnOloTo7QufQ4scnTP1X2w3hiIfwurTcSOY3pnkRVA5+fnirAi7IVW9HS/2LWN6Py/c+0u9tjoLOI67//R1+f6dRf240RRhPW8PpfNduHnzn5gZ5/wx+06rCLMHVZ7P6zDBnOHFRbH5+22Lvc51r7sKx+VHH4aJYJ8VAj3VyPcXwOdvwbBvmr21YjI47Hg1D1J336wWCzIzc3FypUrncdkMhnS09ORnZ3d7TnZ2dlYsWJFl2MZGRnYunUrAKC4uBh6vR7p6enO+7VaLVJTU5GdnY0777wT2dnZCAgIcBabACA9PR0ymQw5OTm49dZbL/i+ZrMZZvO5d3cMBgMA+z+CKz31f3txpq7FpY85EGp72U4mABqVHN6df5BoNUpovZX2j15K+HvZP6qV3b2DboG5tefRT0RE7sBXDvj6C4j11wDQ4KfTogHYR3mW1begpK4FekMrGlvaUd9iQWOLBQX65s7iv83+0WYv+p9PBKCSC11HUIn2ApCAziKNIEAAYLbaIOD8EVFClzcFHD9fz7UROh+ns70AdFhFtNtsECCgtd2ey6G5DWh26VXr2Z3To/HUjeNd+piO39USv8fmVgaiD9adweg/tbVbcf+b37ns8TyFUi5ArZRBLZdDrZQ5R1z6quXwUcvhrVLAV62AVqNCgLcCGpW8m75aO8yt7ZLkJyJyJ66uC7gDV/SfJC041dbWwmq1Ijw8vMvx8PBwnDhxottz9Hp9t+31er3zfsexi7X58VBxhUKBoKAgZ5sfW7NmDf7whz9ccDw6Orqnp0dERB5omdQBhrgXOm8DoampCVqta0dPDVUD0QfrDvtPRETkCYZz/+9y+k+cYN1LK1eu7PKuns1mQ319PYKDgwdlbQuj0Yjo6GiUlZV57HQAXgM7Xgc7XgdeAwdeB14Dh56ugyiKaGpq6tWUeXIt9p+kx2tgx+vAa+DA62DH68Br4DCQ/SdJC04hISGQy+Woqqrqcryqqgo6na7bc3Q63UXbOz5WVVUhIiKiS5vk5GRnm+rq6i6P0dHRgfr6+h6/r1qthlqt7nIsICDg4k9wAPj7+3v0fwwAr4EDr4MdrwOvgQOvA6+BQ3fXgSObuhqIPlh32H9yH7wGdrwOvAYOvA52vA68Bg4D0X+SXdbZl0mlUiElJQVZWVnOYzabDVlZWUhLS+v2nLS0tC7tAWDHjh3O9vHx8dDpdF3aGI1G5OTkONukpaWhsbERubm5zjY7d+6EzWZDamqqy54fERERkTsaiD4YERER0fkkn1K3YsUKLFmyBNOmTcOMGTOwbt06mEwmLF26FACwePFiREVFYc2aNQCAhx9+GHPmzMFLL72EBQsWYPPmzdi/fz9ef/11APaFUR955BE899xzSExMRHx8PJ5++mlERkZi4cKFAIBx48Zh3rx5WLZsGTZs2ID29nYsX74cd955J4fbExERkUdwdR+MiIiI6HySF5wWLVqEmpoarFq1Cnq9HsnJycjMzHQuSllaWgqZ7NxArFmzZmHTpk146qmn8OSTTyIxMRFbt27FxIkTnW0ef/xxmEwm3H///WhsbMTs2bORmZkJjUbjbPPee+9h+fLluO666yCTyXD77bfjlVdeGbwn3kdqtRqrV6++YFi6J+E1sON1sON14DVw4HXgNXDgdeibgeiDuRu+JngNHHgdeA0ceB3seB14DRwG8joIIvcIJiIiIiIiIiIiF5J0DSciIiIiIiIiIhp+WHAiIiIiIiIiIiKXYsGJiIiIiIiIiIhcigUnIiIiIiIiIiJyKRacJPTNN9/gpptuQmRkJARBwNatW7vcf++990IQhC63efPmdWlTX1+Pn/3sZ/D390dAQADuu+8+NDc3D+KzuDxr1qzB9OnT4efnh7CwMCxcuBAFBQVd2rS1teHBBx9EcHAwfH19cfvtt6OqqqpLm9LSUixYsADe3t4ICwvDY489ho6OjsF8KpelN9fh6quvvuD18MADD3RpM9Svw2uvvYbJkyfD398f/v7+SEtLw+eff+683xNeC5e6Bp7wOvixP//5zxAEAY888ojzmCe8Fn6su+vgCa+HZ5555oLnOHbsWOf9nvha8HTsP7H/5MD+E/tODuw/XYj9Jzv2nyTuP4kkme3bt4u///3vxS1btogAxE8++aTL/UuWLBHnzZsnVlZWOm/19fVd2sybN09MSkoSf/jhB/Hbb78VExISxLvuumsQn8XlycjIEN9++23xyJEj4oEDB8QbbrhBjImJEZubm51tHnjgATE6OlrMysoS9+/fL86cOVOcNWuW8/6Ojg5x4sSJYnp6upifny9u375dDAkJEVeuXCnFU+qX3lyHOXPmiMuWLevyejAYDM77h8N1+PTTT8XPPvtMPHnypFhQUCA++eSTolKpFI8cOSKKome8Fi51DTzhdXC+vXv3inFxceLkyZPFhx9+2HncE14L5+vpOnjC62H16tXihAkTujzHmpoa5/2e9log9p9Ekf0nB/af2HdyYP+pK/af7Nh/kr7/xIKTm+ipw3TLLbf0eM6xY8dEAOK+ffucxz7//HNREASxvLx8gJIOrOrqahGA+PXXX4uiKIqNjY2iUqkUP/zwQ2eb48ePiwDE7OxsURTtHU+ZTCbq9Xpnm9dee0309/cXzWbz4D4BF/nxdRBF+w/G839Q/thwvA6iKIqBgYHiP//5T499LYjiuWsgip71OmhqahITExPFHTt2dHnenvZa6Ok6iKJnvB5Wr14tJiUldXufp70W6ELsP9mx/2TH/pMd+0527D+x/8T+U1K39w3ma4FT6tzc7t27ERYWhjFjxuBXv/oV6urqnPdlZ2cjICAA06ZNcx5LT0+HTCZDTk6OFHEvm8FgAAAEBQUBAHJzc9He3o709HRnm7FjxyImJgbZ2dkA7Ndh0qRJCA8Pd7bJyMiA0WjE0aNHBzG96/z4Oji89957CAkJwcSJE7Fy5Uq0tLQ47xtu18FqtWLz5s0wmUxIS0vzyNfCj6+Bg6e8Dh588EEsWLCgy7854Hk/F3q6Dg6e8Ho4deoUIiMjMXLkSPzsZz9DaWkpAM97LVDvsf/kmf9teHr/iX0nO/af2H8C2H8C3KP/pHDRc6EBMG/ePNx2222Ij4/H6dOn8eSTT2L+/PnIzs6GXC6HXq9HWFhYl3MUCgWCgoKg1+slSt1/NpsNjzzyCK644gpMnDgRAKDX66FSqRAQENClbXh4uPM56vX6Lv8hOO533DfUdHcdAODuu+9GbGwsIiMjcejQIfzud79DQUEBtmzZAmD4XIfDhw8jLS0NbW1t8PX1xSeffILx48fjwIEDHvNa6OkaAJ7zOti8eTPy8vKwb9++C+7zpJ8LF7sOgGe8HlJTU7Fx40aMGTMGlZWV+MMf/oArr7wSR44c8ajXAvUe+0+e9XPSwZP7T+w72bH/xP6TA/tP7tN/YsHJjd15553OzydNmoTJkydj1KhR2L17N6677joJkw2MBx98EEeOHMF3330ndRRJ9XQd7r//fufnkyZNQkREBK677jqcPn0ao0aNGuyYA2bMmDE4cOAADAYDPvroIyxZsgRff/211LEGVU/XYPz48R7xOigrK8PDDz+MHTt2QKPRSB1HMr25Dp7wepg/f77z88mTJyM1NRWxsbH4v//7P3h5eUmYjNwV+0+eyZP7T+w72bH/xP4TwP6Tg7v0nzilbggZOXIkQkJCUFhYCADQ6XSorq7u0qajowP19fXQ6XRSROy35cuXY9u2bdi1axdGjBjhPK7T6WCxWNDY2NilfVVVlfM56nS6C1bUd3w9XK5Dd1JTUwGgy+thOFwHlUqFhIQEpKSkYM2aNUhKSsLLL7/sUa+Fnq5Bd4bj6yA3NxfV1dWYOnUqFAoFFAoFvv76a7zyyitQKBQIDw/3iNfCpa6D1Wq94Jzh+Hr4sYCAAIwePRqFhYUe9XOB+o/9p3OG638bnt5/Yt/Jjv0n9p8A9p96IlX/iQWnIeTs2bOoq6tDREQEACAtLQ2NjY3Izc11ttm5cydsNpvzPxp3J4oili9fjk8++QQ7d+5EfHx8l/tTUlKgVCqRlZXlPFZQUIDS0lLnnOy0tDQcPny4S+dxx44d8Pf3dw6jdXeXug7dOXDgAAB0eT0M9evQHZvNBrPZ7DGvhe44rkF3huPr4LrrrsPhw4dx4MAB523atGn42c9+5vzcE14Ll7oOcrn8gnOG4+vhx5qbm3H69GlERER49M8F6j32n+yG438b7D91j30nO/af2H9i/+kcyfpPfV/vnFylqalJzM/PF/Pz80UA4tq1a8X8/HzxzJkzYlNTk/joo4+K2dnZYnFxsfjVV1+JU6dOFRMTE8W2tjbnY8ybN0+cMmWKmJOTI3733XdiYmLikNrW91e/+pWo1WrF3bt3d9mysaWlxdnmgQceEGNiYsSdO3eK+/fvF9PS0sS0tDTn/Y4tG+fOnSseOHBAzMzMFENDQ4fUtpWXug6FhYXiH//4R3H//v1icXGx+J///EccOXKkeNVVVzkfYzhchyeeeEL8+uuvxeLiYvHQoUPiE088IQqCIH755ZeiKHrGa+Fi18BTXgfd+fFuIp7wWujO+dfBU14Pv/3tb8Xdu3eLxcXF4vfffy+mp6eLISEhYnV1tSiKnvta8GTsP7H/5MD+E/tODuw/dY/9Jzv2n6TrP7HgJKFdu3aJAC64LVmyRGxpaRHnzp0rhoaGikqlUoyNjRWXLVvWZVtCURTFuro68a677hJ9fX1Ff39/cenSpWJTU5NEz6jvunv+AMS3337b2aa1tVX89a9/LQYGBore3t7irbfeKlZWVnZ5nJKSEnH+/Pmil5eXGBISIv72t78V29vbB/nZ9N+lrkNpaal41VVXiUFBQaJarRYTEhLExx57TDQYDF0eZ6hfh1/84hdibGysqFKpxNDQUPG6665zdphE0TNeCxe7Bp7yOujOjztMnvBa6M7518FTXg+LFi0SIyIiRJVKJUZFRYmLFi0SCwsLnfd76mvBk7H/xP6TA/tP7Ds5sP/UPfaf7Nh/kq7/JIiiKPZ+PBQREREREREREdHFcQ0nIiIiIiIiIiJyKRaciIiIiIiIiIjIpVhwIiIiIiIiIiIil2LBiYiIiIiIiIiIXIoFJyIiIiIiIiIicikWnIiIiIiIiIiIyKVYcCIiIiIiIiIiIpdiwYmIiIiIiIguauPGjQgICBiU7yUIArZu3Too34uIBg4LTkQ07H3zzTe46aabEBkZ2W0HRhCEbm8vvPCCs01eXh6uv/56BAQEIDg4GPfffz+am5sH+ZkQERGRp6upqcGvfvUrxMTEQK1WQ6fTISMjA99//72zjbsUbK6++mpnv0qj0WD8+PH4+9//fsnzKisrMX/+/EFISEQDiQUnIhr2TCYTkpKSsH79+m7vr6ys7HJ76623IAgCbr/9dgBARUUF0tPTkZCQgJycHGRmZuLo0aO49957B/FZEBEREQG333478vPz8c477+DkyZP49NNPcfXVV6Ourk7qaN1atmwZKisrcezYMfz0pz/Fgw8+iPfff7/bthaLBQCg0+mgVqsHMyYRDQAWnIho2Js/fz6ee+453Hrrrd3er9Pputz+85//4JprrsHIkSMBANu2bYNSqcT69esxZswYTJ8+HRs2bMDHH3+MwsLCwXwqRERE5MEaGxvx7bff4vnnn8c111yD2NhYzJgxAytXrsTNN98MAIiLiwMA3HrrrRAEwfk1ALz22msYNWoUVCoVxowZg3/9618XPP7//M//IDw8HBqNBhMnTsS2bdu6zVJTU4Np06bh1ltvhdls7jGzt7c3dDodRo4ciWeeeQaJiYn49NNPAdhHQC1fvhyPPPIIQkJCkJGRAeDCEVpn/3979xYSVbvHcfynlQcayYTU0s4WpDkxY5IlaoqSRZBpRVNQFhnYRZKgeKNlRYl5yJDIwGzoYBGdzG7UQLCiUmqsyCzCi1IqsYvSIih9L3r32rmzkv2OtWl/P7AuZq3nWfOfuZr5rf961osXstls8vHx0dixYzV//nzdvn3bOH758mVZrVZ5eHhoxowZys/P16dPn4b9vQIYGaN/dwEA8L/k1atXunr1qux2u7Hv48ePcnNzk6vrvzN6T09PSdL169cVFBT0y+sEAAD/f0wmk0wmky5duqSIiIghu4Cam5vl6+urqqoqJSYmatSoUZKkixcvKiMjQwcPHlR8fLxqa2u1adMmBQYGKjY2Vv39/Vq6dKnevXunkydPaubMmXr06JEx/2vPnz9XQkKCIiIiVFlZOeSY7/H09DQ6mSTJbrcrPT190C2BX+vt7VVMTIwCAgJUU1Mjf39/3b17V/39/ZKkpqYmbdiwQYcOHVJUVJSePXumrVu3SpJ27tw57LoAOB+BEwB8xW63y8vLS8nJyca+uLg4ZWZm6sCBA8rIyFBfX59ycnIkfbkdDwAA4FcYPXq0jh8/rrS0NB05ckRWq1UxMTFau3atzGazJGnChAmSJG9vb/n7+xtzi4qKlJqaqm3btkmSMjMzdevWLRUVFSk2NlYNDQ26c+eO2traNHv2bEkyur2/1t7eroSEBK1cuVIHDx6Ui4vLsGr//Pmzqqurdf/+fSMQkqRZs2apsLDwu/NOnz6t7u5uNTc3y8fHR5IGXezLz89XTk6ONm7caNS8Z88eZWdnEzgBvxm31AHAV44dO6b169fLw8PD2BcSEiK73a7i4mKjLXz69Ony8/Mb1PUEAAAw0lJSUtTV1aWamholJiaqsbFRVqtVx48f/+G8trY2RUZGDtoXGRmptrY2SZLD4VBgYKARNg3lw4cPioqKUnJyssrKyoYVNh0+fFgmk0menp5KS0vTjh07lJ6ebhwPCwv74XyHwyGLxWKETf+ptbVVu3fvNrq/TCaTsW7U+/fvf1ofgJHDPyUA+FtTU5Pa29u1ZcuWb46tW7dOL1++VGdnp3p6erRr1y51d3cPeeUPAABgJHl4eCghIUG5ubm6efOmUlNT/3E3z7+WC/gRd3d343a8zs7OYZ13/fr1cjgc6ujoUF9fn0pKSgZdsBs7duw/qqu3t1f5+flyOBzG9uDBAz19+nTQBUQAvx6BEwD8rbKyUmFhYZo3b953x/j5+clkMuns2bPGjz0AAIDfKTg4WH19fcbrMWPG6PPnz4PGzJkz55t1km7cuKHg4GBJktls1osXL/TkyZPvvo+rq6tOnDihsLAwxcbGqqur66e1jRs3TkFBQQoICPivOsPNZrMcDofevHkz5HGr1ar29nYFBQV9s9GJDvxerOEE4I/X29s76GlyHR0dcjgc8vHx0ZQpUyRJb9++1blz51RcXDzkOcrLy7Vo0SKZTCbV19crKytLBQUF8vb2/hUfAQAAQD09PVq9erU2b94ss9ksLy8vtbS0qLCwUCtWrDDGTZs2TdeuXVNkZKTc3d01fvx4ZWVlac2aNbJYLIqPj9eVK1d04cIFNTQ0SJJiYmIUHR2tlJQUlZSUKCgoSI8fP5aLi4sSExONc48aNUqnTp2SzWZTXFycGhsbB60V5Ww2m0379u1TUlKS9u/fr4kTJ+revXuaNGmSFi5cqLy8PC1fvlxTpkzRqlWr5OrqqtbWVj18+FB79+4dsboA/ByRL4A/XktLiywWiywWi6Qvi2RaLBbl5eUZY86cOaOBgQHZbLYhz3Hnzh0lJCQoNDRUR48eVUVFhbZv3/5L6gcAAJC+PKVuwYIFKi0tVXR0tObOnavc3FylpaWpvLzcGFdcXKz6+npNnjzZ+P2TlJSksrIyFRUVKSQkRBUVFaqqqtLixYuNeefPn1d4eLhsNpuCg4OVnZ39TaeU9GXx8urqaoWEhCguLk6vX78esc/s5uamuro6+fr6atmyZQoNDVVBQYHxZLwlS5aotrZWdXV1Cg8PV0REhEpLSzV16tQRqwnA8LgMDAwM/O4iAAAAAAAA8OegwwkAAAAAAABOReAEAAAAAAAApyJwAgAAAAAAgFMROAEAAAAAAMCpCJwAAAAAAADgVAROAAAAAAAAcCoCJwAAAAAAADgVgRMAAAAAAACcisAJAAAAAAAATkXgBAAAAAAAAKcicAIAAAAAAIBTETgBAAAAAADAqf4CSnF28n6beRYAAAAASUVORK5CYII=",
674
+ "text/plain": [
675
+ "<Figure size 1400x400 with 2 Axes>"
676
+ ]
677
+ },
678
+ "metadata": {},
679
+ "output_type": "display_data"
680
+ },
681
+ {
682
+ "name": "stdout",
683
+ "output_type": "stream",
684
+ "text": [
685
+ "AMP\n",
686
+ "Days: 179\n",
687
+ "Expected Value: $295.29\n",
688
+ "Return: -28.36%\n",
689
+ "Probability of Breakeven: 0.021\n"
690
+ ]
691
+ },
692
+ {
693
+ "data": {
694
+ "text/html": [
695
+ "<div>\n",
696
+ "<style scoped>\n",
697
+ " .dataframe tbody tr th:only-of-type {\n",
698
+ " vertical-align: middle;\n",
699
+ " }\n",
700
+ "\n",
701
+ " .dataframe tbody tr th {\n",
702
+ " vertical-align: top;\n",
703
+ " }\n",
704
+ "\n",
705
+ " .dataframe thead th {\n",
706
+ " text-align: right;\n",
707
+ " }\n",
708
+ "</style>\n",
709
+ "<table border=\"1\" class=\"dataframe\">\n",
710
+ " <thead>\n",
711
+ " <tr style=\"text-align: right;\">\n",
712
+ " <th></th>\n",
713
+ " <th>0</th>\n",
714
+ " <th>1</th>\n",
715
+ " <th>2</th>\n",
716
+ " <th>3</th>\n",
717
+ " <th>4</th>\n",
718
+ " <th>5</th>\n",
719
+ " <th>6</th>\n",
720
+ " <th>7</th>\n",
721
+ " <th>8</th>\n",
722
+ " <th>9</th>\n",
723
+ " <th>...</th>\n",
724
+ " <th>1990</th>\n",
725
+ " <th>1991</th>\n",
726
+ " <th>1992</th>\n",
727
+ " <th>1993</th>\n",
728
+ " <th>1994</th>\n",
729
+ " <th>1995</th>\n",
730
+ " <th>1996</th>\n",
731
+ " <th>1997</th>\n",
732
+ " <th>1998</th>\n",
733
+ " <th>1999</th>\n",
734
+ " </tr>\n",
735
+ " </thead>\n",
736
+ " <tbody>\n",
737
+ " <tr>\n",
738
+ " <th>0</th>\n",
739
+ " <td>379.030000</td>\n",
740
+ " <td>379.030000</td>\n",
741
+ " <td>379.030000</td>\n",
742
+ " <td>379.030000</td>\n",
743
+ " <td>379.030000</td>\n",
744
+ " <td>379.030000</td>\n",
745
+ " <td>379.030000</td>\n",
746
+ " <td>379.030000</td>\n",
747
+ " <td>379.030000</td>\n",
748
+ " <td>379.030000</td>\n",
749
+ " <td>...</td>\n",
750
+ " <td>379.030000</td>\n",
751
+ " <td>379.030000</td>\n",
752
+ " <td>379.030000</td>\n",
753
+ " <td>379.030000</td>\n",
754
+ " <td>379.030000</td>\n",
755
+ " <td>379.030000</td>\n",
756
+ " <td>379.030000</td>\n",
757
+ " <td>379.030000</td>\n",
758
+ " <td>379.030000</td>\n",
759
+ " <td>379.030000</td>\n",
760
+ " </tr>\n",
761
+ " <tr>\n",
762
+ " <th>1</th>\n",
763
+ " <td>379.352661</td>\n",
764
+ " <td>381.714966</td>\n",
765
+ " <td>383.375358</td>\n",
766
+ " <td>374.618161</td>\n",
767
+ " <td>379.056080</td>\n",
768
+ " <td>383.724965</td>\n",
769
+ " <td>379.268473</td>\n",
770
+ " <td>383.107347</td>\n",
771
+ " <td>375.761131</td>\n",
772
+ " <td>376.028392</td>\n",
773
+ " <td>...</td>\n",
774
+ " <td>378.794027</td>\n",
775
+ " <td>375.038490</td>\n",
776
+ " <td>375.485313</td>\n",
777
+ " <td>375.864464</td>\n",
778
+ " <td>382.186543</td>\n",
779
+ " <td>377.960955</td>\n",
780
+ " <td>378.357218</td>\n",
781
+ " <td>384.599065</td>\n",
782
+ " <td>377.076425</td>\n",
783
+ " <td>376.789847</td>\n",
784
+ " </tr>\n",
785
+ " <tr>\n",
786
+ " <th>2</th>\n",
787
+ " <td>383.591870</td>\n",
788
+ " <td>383.667919</td>\n",
789
+ " <td>387.326043</td>\n",
790
+ " <td>378.040984</td>\n",
791
+ " <td>383.788079</td>\n",
792
+ " <td>384.552494</td>\n",
793
+ " <td>380.759779</td>\n",
794
+ " <td>380.522154</td>\n",
795
+ " <td>375.154570</td>\n",
796
+ " <td>374.085927</td>\n",
797
+ " <td>...</td>\n",
798
+ " <td>387.705626</td>\n",
799
+ " <td>373.992699</td>\n",
800
+ " <td>376.977980</td>\n",
801
+ " <td>375.518888</td>\n",
802
+ " <td>382.730319</td>\n",
803
+ " <td>379.596358</td>\n",
804
+ " <td>375.710396</td>\n",
805
+ " <td>379.918507</td>\n",
806
+ " <td>375.128224</td>\n",
807
+ " <td>378.423115</td>\n",
808
+ " </tr>\n",
809
+ " <tr>\n",
810
+ " <th>3</th>\n",
811
+ " <td>386.108322</td>\n",
812
+ " <td>387.878792</td>\n",
813
+ " <td>384.256772</td>\n",
814
+ " <td>375.464701</td>\n",
815
+ " <td>387.219939</td>\n",
816
+ " <td>381.711610</td>\n",
817
+ " <td>381.759838</td>\n",
818
+ " <td>377.722111</td>\n",
819
+ " <td>380.351716</td>\n",
820
+ " <td>369.994757</td>\n",
821
+ " <td>...</td>\n",
822
+ " <td>382.980634</td>\n",
823
+ " <td>377.054784</td>\n",
824
+ " <td>373.449616</td>\n",
825
+ " <td>372.747890</td>\n",
826
+ " <td>379.812307</td>\n",
827
+ " <td>374.961612</td>\n",
828
+ " <td>371.970980</td>\n",
829
+ " <td>378.593563</td>\n",
830
+ " <td>374.644340</td>\n",
831
+ " <td>381.921425</td>\n",
832
+ " </tr>\n",
833
+ " <tr>\n",
834
+ " <th>4</th>\n",
835
+ " <td>381.631130</td>\n",
836
+ " <td>392.071871</td>\n",
837
+ " <td>386.789258</td>\n",
838
+ " <td>379.043435</td>\n",
839
+ " <td>388.119138</td>\n",
840
+ " <td>384.337388</td>\n",
841
+ " <td>382.796217</td>\n",
842
+ " <td>378.511563</td>\n",
843
+ " <td>382.213891</td>\n",
844
+ " <td>369.667710</td>\n",
845
+ " <td>...</td>\n",
846
+ " <td>377.895425</td>\n",
847
+ " <td>370.365979</td>\n",
848
+ " <td>374.697049</td>\n",
849
+ " <td>370.855179</td>\n",
850
+ " <td>376.347085</td>\n",
851
+ " <td>370.040956</td>\n",
852
+ " <td>367.751955</td>\n",
853
+ " <td>373.388293</td>\n",
854
+ " <td>377.899273</td>\n",
855
+ " <td>379.154510</td>\n",
856
+ " </tr>\n",
857
+ " <tr>\n",
858
+ " <th>...</th>\n",
859
+ " <td>...</td>\n",
860
+ " <td>...</td>\n",
861
+ " <td>...</td>\n",
862
+ " <td>...</td>\n",
863
+ " <td>...</td>\n",
864
+ " <td>...</td>\n",
865
+ " <td>...</td>\n",
866
+ " <td>...</td>\n",
867
+ " <td>...</td>\n",
868
+ " <td>...</td>\n",
869
+ " <td>...</td>\n",
870
+ " <td>...</td>\n",
871
+ " <td>...</td>\n",
872
+ " <td>...</td>\n",
873
+ " <td>...</td>\n",
874
+ " <td>...</td>\n",
875
+ " <td>...</td>\n",
876
+ " <td>...</td>\n",
877
+ " <td>...</td>\n",
878
+ " <td>...</td>\n",
879
+ " <td>...</td>\n",
880
+ " </tr>\n",
881
+ " <tr>\n",
882
+ " <th>175</th>\n",
883
+ " <td>274.620651</td>\n",
884
+ " <td>327.468959</td>\n",
885
+ " <td>338.998329</td>\n",
886
+ " <td>311.132089</td>\n",
887
+ " <td>277.171998</td>\n",
888
+ " <td>268.362211</td>\n",
889
+ " <td>296.044323</td>\n",
890
+ " <td>272.474672</td>\n",
891
+ " <td>258.583479</td>\n",
892
+ " <td>323.754294</td>\n",
893
+ " <td>...</td>\n",
894
+ " <td>308.143244</td>\n",
895
+ " <td>306.289989</td>\n",
896
+ " <td>293.509720</td>\n",
897
+ " <td>238.018586</td>\n",
898
+ " <td>241.767277</td>\n",
899
+ " <td>276.028667</td>\n",
900
+ " <td>331.820011</td>\n",
901
+ " <td>274.102543</td>\n",
902
+ " <td>318.014381</td>\n",
903
+ " <td>367.952975</td>\n",
904
+ " </tr>\n",
905
+ " <tr>\n",
906
+ " <th>176</th>\n",
907
+ " <td>273.823051</td>\n",
908
+ " <td>330.329240</td>\n",
909
+ " <td>340.157730</td>\n",
910
+ " <td>315.772843</td>\n",
911
+ " <td>276.109058</td>\n",
912
+ " <td>271.104723</td>\n",
913
+ " <td>290.589379</td>\n",
914
+ " <td>271.241683</td>\n",
915
+ " <td>259.441422</td>\n",
916
+ " <td>322.390141</td>\n",
917
+ " <td>...</td>\n",
918
+ " <td>309.378225</td>\n",
919
+ " <td>304.545964</td>\n",
920
+ " <td>300.364879</td>\n",
921
+ " <td>239.519264</td>\n",
922
+ " <td>242.484682</td>\n",
923
+ " <td>279.416244</td>\n",
924
+ " <td>330.770579</td>\n",
925
+ " <td>271.380431</td>\n",
926
+ " <td>317.868825</td>\n",
927
+ " <td>375.309240</td>\n",
928
+ " </tr>\n",
929
+ " <tr>\n",
930
+ " <th>177</th>\n",
931
+ " <td>268.611234</td>\n",
932
+ " <td>327.913665</td>\n",
933
+ " <td>340.507277</td>\n",
934
+ " <td>315.386937</td>\n",
935
+ " <td>280.087126</td>\n",
936
+ " <td>272.714697</td>\n",
937
+ " <td>286.569191</td>\n",
938
+ " <td>269.093063</td>\n",
939
+ " <td>260.158056</td>\n",
940
+ " <td>321.484201</td>\n",
941
+ " <td>...</td>\n",
942
+ " <td>311.814690</td>\n",
943
+ " <td>309.325043</td>\n",
944
+ " <td>295.015790</td>\n",
945
+ " <td>240.915226</td>\n",
946
+ " <td>241.481323</td>\n",
947
+ " <td>279.862726</td>\n",
948
+ " <td>328.342621</td>\n",
949
+ " <td>267.904477</td>\n",
950
+ " <td>316.983911</td>\n",
951
+ " <td>377.162959</td>\n",
952
+ " </tr>\n",
953
+ " <tr>\n",
954
+ " <th>178</th>\n",
955
+ " <td>267.943621</td>\n",
956
+ " <td>326.330867</td>\n",
957
+ " <td>336.213854</td>\n",
958
+ " <td>313.826748</td>\n",
959
+ " <td>278.087766</td>\n",
960
+ " <td>266.557115</td>\n",
961
+ " <td>284.299963</td>\n",
962
+ " <td>267.645930</td>\n",
963
+ " <td>258.882895</td>\n",
964
+ " <td>318.415170</td>\n",
965
+ " <td>...</td>\n",
966
+ " <td>311.421097</td>\n",
967
+ " <td>307.198771</td>\n",
968
+ " <td>294.829539</td>\n",
969
+ " <td>239.443694</td>\n",
970
+ " <td>240.116965</td>\n",
971
+ " <td>283.072914</td>\n",
972
+ " <td>327.138140</td>\n",
973
+ " <td>265.037441</td>\n",
974
+ " <td>314.558325</td>\n",
975
+ " <td>375.887249</td>\n",
976
+ " </tr>\n",
977
+ " <tr>\n",
978
+ " <th>179</th>\n",
979
+ " <td>265.070193</td>\n",
980
+ " <td>326.852844</td>\n",
981
+ " <td>335.912955</td>\n",
982
+ " <td>317.773837</td>\n",
983
+ " <td>275.479935</td>\n",
984
+ " <td>263.751964</td>\n",
985
+ " <td>286.049375</td>\n",
986
+ " <td>263.748028</td>\n",
987
+ " <td>259.920448</td>\n",
988
+ " <td>315.868492</td>\n",
989
+ " <td>...</td>\n",
990
+ " <td>309.732946</td>\n",
991
+ " <td>307.898267</td>\n",
992
+ " <td>298.888811</td>\n",
993
+ " <td>238.543232</td>\n",
994
+ " <td>244.912671</td>\n",
995
+ " <td>282.958299</td>\n",
996
+ " <td>326.508719</td>\n",
997
+ " <td>263.808481</td>\n",
998
+ " <td>314.730609</td>\n",
999
+ " <td>380.917933</td>\n",
1000
+ " </tr>\n",
1001
+ " </tbody>\n",
1002
+ "</table>\n",
1003
+ "<p>180 rows × 2000 columns</p>\n",
1004
+ "</div>"
1005
+ ],
1006
+ "text/plain": [
1007
+ " 0 1 2 3 4 5 \\\n",
1008
+ "0 379.030000 379.030000 379.030000 379.030000 379.030000 379.030000 \n",
1009
+ "1 379.352661 381.714966 383.375358 374.618161 379.056080 383.724965 \n",
1010
+ "2 383.591870 383.667919 387.326043 378.040984 383.788079 384.552494 \n",
1011
+ "3 386.108322 387.878792 384.256772 375.464701 387.219939 381.711610 \n",
1012
+ "4 381.631130 392.071871 386.789258 379.043435 388.119138 384.337388 \n",
1013
+ ".. ... ... ... ... ... ... \n",
1014
+ "175 274.620651 327.468959 338.998329 311.132089 277.171998 268.362211 \n",
1015
+ "176 273.823051 330.329240 340.157730 315.772843 276.109058 271.104723 \n",
1016
+ "177 268.611234 327.913665 340.507277 315.386937 280.087126 272.714697 \n",
1017
+ "178 267.943621 326.330867 336.213854 313.826748 278.087766 266.557115 \n",
1018
+ "179 265.070193 326.852844 335.912955 317.773837 275.479935 263.751964 \n",
1019
+ "\n",
1020
+ " 6 7 8 9 ... 1990 \\\n",
1021
+ "0 379.030000 379.030000 379.030000 379.030000 ... 379.030000 \n",
1022
+ "1 379.268473 383.107347 375.761131 376.028392 ... 378.794027 \n",
1023
+ "2 380.759779 380.522154 375.154570 374.085927 ... 387.705626 \n",
1024
+ "3 381.759838 377.722111 380.351716 369.994757 ... 382.980634 \n",
1025
+ "4 382.796217 378.511563 382.213891 369.667710 ... 377.895425 \n",
1026
+ ".. ... ... ... ... ... ... \n",
1027
+ "175 296.044323 272.474672 258.583479 323.754294 ... 308.143244 \n",
1028
+ "176 290.589379 271.241683 259.441422 322.390141 ... 309.378225 \n",
1029
+ "177 286.569191 269.093063 260.158056 321.484201 ... 311.814690 \n",
1030
+ "178 284.299963 267.645930 258.882895 318.415170 ... 311.421097 \n",
1031
+ "179 286.049375 263.748028 259.920448 315.868492 ... 309.732946 \n",
1032
+ "\n",
1033
+ " 1991 1992 1993 1994 1995 1996 \\\n",
1034
+ "0 379.030000 379.030000 379.030000 379.030000 379.030000 379.030000 \n",
1035
+ "1 375.038490 375.485313 375.864464 382.186543 377.960955 378.357218 \n",
1036
+ "2 373.992699 376.977980 375.518888 382.730319 379.596358 375.710396 \n",
1037
+ "3 377.054784 373.449616 372.747890 379.812307 374.961612 371.970980 \n",
1038
+ "4 370.365979 374.697049 370.855179 376.347085 370.040956 367.751955 \n",
1039
+ ".. ... ... ... ... ... ... \n",
1040
+ "175 306.289989 293.509720 238.018586 241.767277 276.028667 331.820011 \n",
1041
+ "176 304.545964 300.364879 239.519264 242.484682 279.416244 330.770579 \n",
1042
+ "177 309.325043 295.015790 240.915226 241.481323 279.862726 328.342621 \n",
1043
+ "178 307.198771 294.829539 239.443694 240.116965 283.072914 327.138140 \n",
1044
+ "179 307.898267 298.888811 238.543232 244.912671 282.958299 326.508719 \n",
1045
+ "\n",
1046
+ " 1997 1998 1999 \n",
1047
+ "0 379.030000 379.030000 379.030000 \n",
1048
+ "1 384.599065 377.076425 376.789847 \n",
1049
+ "2 379.918507 375.128224 378.423115 \n",
1050
+ "3 378.593563 374.644340 381.921425 \n",
1051
+ "4 373.388293 377.899273 379.154510 \n",
1052
+ ".. ... ... ... \n",
1053
+ "175 274.102543 318.014381 367.952975 \n",
1054
+ "176 271.380431 317.868825 375.309240 \n",
1055
+ "177 267.904477 316.983911 377.162959 \n",
1056
+ "178 265.037441 314.558325 375.887249 \n",
1057
+ "179 263.808481 314.730609 380.917933 \n",
1058
+ "\n",
1059
+ "[180 rows x 2000 columns]"
1060
+ ]
1061
+ },
1062
+ "execution_count": 150,
1063
+ "metadata": {},
1064
+ "output_type": "execute_result"
1065
+ }
1066
+ ],
1067
+ "source": [
1068
+ "simulate_mc(data, days, 2000, 'log')"
1069
+ ]
1070
+ },
1071
+ {
1072
+ "cell_type": "markdown",
1073
+ "metadata": {},
1074
+ "source": [
1075
+ "Now, let's loop through all the stated securities and generate the visualizations and statistics that will help us understand the expected performance of a stock."
1076
+ ]
1077
+ },
1078
+ {
1079
+ "cell_type": "code",
1080
+ "execution_count": 151,
1081
+ "metadata": {},
1082
+ "outputs": [],
1083
+ "source": [
1084
+ "def monte_carlo(tickers, days_forecast, iterations, start_date = '2000-1-1', return_type = 'log', plotten=False):\n",
1085
+ " api_key = os.environ.get('API_KEY')\n",
1086
+ " data = import_stock_data_alphavantage(tickers, api_key)\n",
1087
+ " inform = beta_sharpe(data, mark_ticker=\"SPY\", start=start_date)\n",
1088
+ " simulatedDF = []\n",
1089
+ " for t in range(len(tickers)):\n",
1090
+ " y = simulate_mc(data.iloc[:,t], (days_forecast+1), iterations, return_type)\n",
1091
+ " if plotten == True:\n",
1092
+ " forplot = y.iloc[:,0:10]\n",
1093
+ " forplot.plot(figsize=(15,4))\n",
1094
+ " print(f\"Beta: {round(inform.iloc[t,inform.columns.get_loc('Beta')],2)}\")\n",
1095
+ " print(f\"Sharpe: {round(inform.iloc[t,inform.columns.get_loc('Sharpe')],2)}\") \n",
1096
+ " print(f\"CAPM Return: {round(100*inform.iloc[t,inform.columns.get_loc('CAPM')],2)}%\")\n",
1097
+ " y['ticker'] = tickers[t]\n",
1098
+ " cols = y.columns.tolist()\n",
1099
+ " cols = cols[-1:] + cols[:-1]\n",
1100
+ " y = y[cols]\n",
1101
+ " simulatedDF.append(y)\n",
1102
+ " simulatedDF = pd.concat(simulatedDF)\n",
1103
+ " return simulatedDF"
1104
+ ]
1105
+ },
1106
+ {
1107
+ "cell_type": "code",
1108
+ "execution_count": 152,
1109
+ "metadata": {
1110
+ "scrolled": false
1111
+ },
1112
+ "outputs": [
1113
+ {
1114
+ "name": "stdout",
1115
+ "output_type": "stream",
1116
+ "text": [
1117
+ "Market data shape: (23, 1)\n",
1118
+ "Number of non-NaN entries in market data: 23\n",
1119
+ "First few rows of market data:\n",
1120
+ " SPY\n",
1121
+ "date \n",
1122
+ "2024-02-02 494.35\n",
1123
+ "2024-02-01 489.20\n",
1124
+ "2024-01-31 482.88\n",
1125
+ "2024-01-30 490.89\n",
1126
+ "2024-01-29 491.27\n",
1127
+ "printing dd\n",
1128
+ " GOOG AAPL SPY\n",
1129
+ "date \n",
1130
+ "2024-01-02 139.56 185.64 472.65\n",
1131
+ "2024-01-03 140.36 184.25 468.79\n",
1132
+ "2024-01-04 138.04 181.91 467.28\n",
1133
+ "2024-01-05 137.39 181.18 467.92\n",
1134
+ "2024-01-08 140.53 185.56 474.60\n",
1135
+ "printing mark_ret\n",
1136
+ "[-0.40200844]\n",
1137
+ "Error in drift_calc: 'numpy.float64' object has no attribute 'values'\n",
1138
+ "Please check the input data and return type\n"
1139
+ ]
1140
+ },
1141
+ {
1142
+ "ename": "TypeError",
1143
+ "evalue": "unsupported operand type(s) for +: 'NoneType' and 'float'",
1144
+ "output_type": "error",
1145
+ "traceback": [
1146
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1147
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
1148
+ "Cell \u001b[0;32mIn[152], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m days_to_forecast\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m252\u001b[39m\n\u001b[1;32m 3\u001b[0m simulation_trials\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10000\u001b[39m\n\u001b[0;32m----> 4\u001b[0m ret_sim_df \u001b[38;5;241m=\u001b[39m \u001b[43mmonte_carlo\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mGOOG\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mAAPL\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdays_forecast\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdays_to_forecast\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msimulation_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart_date\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mplotten\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
1149
+ "Cell \u001b[0;32mIn[151], line 7\u001b[0m, in \u001b[0;36mmonte_carlo\u001b[0;34m(tickers, days_forecast, iterations, start_date, return_type, plotten)\u001b[0m\n\u001b[1;32m 5\u001b[0m simulatedDF \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(tickers)):\n\u001b[0;32m----> 7\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[43msimulate_mc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miloc\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43mt\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mdays_forecast\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m plotten \u001b[38;5;241m==\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 9\u001b[0m forplot \u001b[38;5;241m=\u001b[39m y\u001b[38;5;241m.\u001b[39miloc[:,\u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m10\u001b[39m]\n",
1150
+ "Cell \u001b[0;32mIn[149], line 5\u001b[0m, in \u001b[0;36msimulate_mc\u001b[0;34m(data, days, iterations, return_type, plot)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msimulate_mc\u001b[39m(data, days, iterations, return_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlog\u001b[39m\u001b[38;5;124m'\u001b[39m, plot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Generate daily returns\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m returns \u001b[38;5;241m=\u001b[39m \u001b[43mdaily_returns\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdays\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# Create empty matrix\u001b[39;00m\n\u001b[1;32m 7\u001b[0m price_list \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mzeros_like(returns)\n",
1151
+ "Cell \u001b[0;32mIn[146], line 20\u001b[0m, in \u001b[0;36mdaily_returns\u001b[0;34m(data, days, iterations, return_type)\u001b[0m\n\u001b[1;32m 16\u001b[0m stv \u001b[38;5;241m=\u001b[39m simple_returns(data)\u001b[38;5;241m.\u001b[39mstd()\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m# Oftentimes, we find that the distribution of returns is a variation of the normal distribution where it has a fat tail\u001b[39;00m\n\u001b[1;32m 19\u001b[0m \u001b[38;5;66;03m# This distribution is called cauchy distribution\u001b[39;00m\n\u001b[0;32m---> 20\u001b[0m dr \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mexp(\u001b[43mft\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mstv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mnorm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mppf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrand\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdays\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dr\n",
1152
+ "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'NoneType' and 'float'"
1153
+ ]
1154
+ }
1155
+ ],
1156
+ "source": [
1157
+ "start = \"2015-1-1\"\n",
1158
+ "days_to_forecast= 252\n",
1159
+ "simulation_trials= 10000\n",
1160
+ "ret_sim_df = monte_carlo(['GOOG','AAPL'], days_forecast= days_to_forecast, iterations=simulation_trials, start_date=start, plotten=False)"
1161
+ ]
1162
+ },
1163
+ {
1164
+ "cell_type": "code",
1165
+ "execution_count": null,
1166
+ "metadata": {},
1167
+ "outputs": [],
1168
+ "source": []
1169
+ }
1170
+ ],
1171
+ "metadata": {
1172
+ "kernelspec": {
1173
+ "display_name": "Python 3",
1174
+ "language": "python",
1175
+ "name": "python3"
1176
+ },
1177
+ "language_info": {
1178
+ "codemirror_mode": {
1179
+ "name": "ipython",
1180
+ "version": 3
1181
+ },
1182
+ "file_extension": ".py",
1183
+ "mimetype": "text/x-python",
1184
+ "name": "python",
1185
+ "nbconvert_exporter": "python",
1186
+ "pygments_lexer": "ipython3",
1187
+ "version": "3.12.1"
1188
+ }
1189
+ },
1190
+ "nbformat": 4,
1191
+ "nbformat_minor": 2
1192
+ }
README.md CHANGED
@@ -1,13 +1 @@
1
- ---
2
- title: Montecarlo Automated
3
- emoji: 🌖
4
- colorFrom: purple
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.18.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # montecarlo-automated
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pandas as pd
4
+ #from pandas_datareader import data as wb
5
+ import matplotlib.pyplot as plt
6
+ from scipy.stats import norm, gmean, cauchy
7
+ import seaborn as sns
8
+ from datetime import datetime
9
+ import os
10
+ import json
11
+
12
+ #%matplotlib inline
13
+ from alpha_vantage.timeseries import TimeSeries
14
+ import pandas as pd
15
+ from datetime import datetime
16
+
17
+ # Function to import stock data using Alpha Vantage
18
+ def import_stock_data_alphavantage(tickers, api_key, start='2024-1-01', end=datetime.today().strftime('%Y-%m-%d')):
19
+ data = pd.DataFrame()
20
+ ts = TimeSeries(key=api_key, output_format='pandas') # Initialize TimeSeries with your API key
21
+ if isinstance(tickers, str):
22
+ tickers = [tickers] # Convert to list if only one ticker is provided
23
+ for ticker in tickers:
24
+ # Get the stock data
25
+ df, meta_data = ts.get_daily_adjusted(ticker, outputsize='full')
26
+ # Selecting only the '5. adjusted close' column and renaming it to the ticker
27
+ df = df['5. adjusted close'].rename(ticker).to_frame()
28
+ # Filter the data based on the start and end dates
29
+ df = df[(df.index >= start) & (df.index <= end)]
30
+ # If data is empty, initialize it with the current df
31
+ if data.empty:
32
+ data = df
33
+ else:
34
+ # If not empty, join the new df with the existing data
35
+ data = data.join(df, how='outer')
36
+ return data
37
+
38
+
39
+ def log_returns(data):
40
+ """
41
+ Calculate the log returns of a given dataset.
42
+
43
+ Parameters:
44
+ data (pandas.DataFrame): The dataset for which log returns are calculated.
45
+
46
+ Returns:
47
+ pandas.DataFrame: The log returns of the dataset.
48
+ """
49
+ return (np.log(1+data.pct_change()))
50
+
51
+
52
+ def simple_returns(data):
53
+ """
54
+ Calculate the simple returns of a given dataset.
55
+
56
+ Parameters:
57
+ data (pandas.Series): The dataset for which to calculate the simple returns.
58
+
59
+ Returns:
60
+ pandas.Series: The simple returns of the dataset.
61
+ """
62
+ return ((data/data.shift(1))-1)
63
+
64
+
65
+ def market_data_combination(data, mark_ticker = "SPY", start='2022-1-1'):
66
+ api_key = os.environ.get('ALPHAVANTAGE_API_KEY')
67
+ market_data = import_stock_data_alphavantage(mark_ticker, api_key)
68
+ market_rets = log_returns(market_data).dropna()
69
+ ann_return = np.exp(market_rets.mean()*252).values-1
70
+ data = data.merge(market_data, left_index=True, right_index=True)
71
+ # Add debugging statements here
72
+ print("Market data shape:", market_data.shape)
73
+ print("Number of non-NaN entries in market data:", sum(~market_data.isna().values.flatten()))
74
+ print("First few rows of market data:\n", market_data.head())
75
+ return data, ann_return
76
+
77
+ def beta_sharpe(data, mark_ticker = "SPY", start='2010-1-1', riskfree = 0.025):
78
+
79
+ """
80
+ Input:
81
+ 1. data: dataframe of stock price data
82
+ 2. mark_ticker: ticker of the market data you want to compute CAPM metrics with (default is ^GSPC)
83
+ 3. start: data from which to download data (default Jan 1st 2010)
84
+ 4. riskfree: the assumed risk free yield (US 10 Year Bond is assumed: 2.5%)
85
+
86
+ Output:
87
+ 1. Dataframe with CAPM metrics computed against specified market procy
88
+ """
89
+ # Beta
90
+ dd, mark_ret = market_data_combination(data, mark_ticker, start)
91
+ print("printing dd")
92
+ print(dd.head())
93
+ print("printing mark_ret")
94
+ print(mark_ret)
95
+ log_ret = log_returns(dd)
96
+ covar = log_ret.cov()*252
97
+ covar = pd.DataFrame(covar.iloc[:-1,-1])
98
+ mrk_var = log_ret.iloc[:,-1].var()*252
99
+ beta = covar/mrk_var
100
+
101
+ stdev_ret = pd.DataFrame(((log_ret.std()*250**0.5)[:-1]), columns=['STD'])
102
+ beta = beta.merge(stdev_ret, left_index=True, right_index=True)
103
+
104
+ # CAPM
105
+ for i, row in beta.iterrows():
106
+ beta.at[i,'CAPM'] = riskfree + (row[mark_ticker] * (mark_ret-riskfree))
107
+ # Sharpe
108
+ for i, row in beta.iterrows():
109
+ beta.at[i,'Sharpe'] = ((row['CAPM']-riskfree)/(row['STD']))
110
+ beta.rename(columns={"SPY":"Beta"}, inplace=True)
111
+
112
+ return beta
113
+
114
+ def drift_calc(data, return_type='log'):
115
+ try:
116
+ if return_type == 'log':
117
+ lr = log_returns(data)
118
+ elif return_type == 'simple':
119
+ lr = simple_returns(data)
120
+ u = lr.mean()
121
+ var = lr.var()
122
+ drift = u - (0.5 * var)
123
+ return drift.values
124
+ except Exception as e:
125
+ print(f"Error in drift_calc: {str(e)}")
126
+ print("Please check the input data and return type")
127
+ return None
128
+
129
+ def daily_returns(data, days, iterations, return_type='log'):
130
+ ft = drift_calc(data, return_type)
131
+ if return_type == 'log':
132
+ try:
133
+ stv = log_returns(data).std().values
134
+ except:
135
+ stv = log_returns(data).std()
136
+ elif return_type == 'simple':
137
+ try:
138
+ stv = simple_returns(data).std().values
139
+ except:
140
+ stv = simple_returns(data).std()
141
+
142
+ # Oftentimes, we find that the distribution of returns is a variation of the normal distribution where it has a fat tail
143
+ # This distribution is called cauchy distribution
144
+ dr = np.exp(ft + stv * norm.ppf(np.random.rand(days, iterations)))
145
+ return dr
146
+
147
+ def probs_find(predicted, higherthan, on = 'value'):
148
+ """
149
+ This function calculated the probability of a stock being above a certain threshhold, which can be defined as a value (final stock price) or return rate (percentage change)
150
+ Input:
151
+ 1. predicted: dataframe with all the predicted prices (days and simulations)
152
+ 2. higherthan: specified threshhold to which compute the probability (ex. 0 on return will compute the probability of at least breakeven)
153
+ 3. on: 'return' or 'value', the return of the stock or the final value of stock for every simulation over the time specified
154
+ """
155
+ if on == 'return':
156
+ predicted0 = predicted.iloc[0,0]
157
+ predicted = predicted.iloc[-1]
158
+ predList = list(predicted)
159
+ over = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 >= higherthan]
160
+ less = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 < higherthan]
161
+ elif on == 'value':
162
+ predicted = predicted.iloc[-1]
163
+ predList = list(predicted)
164
+ over = [i for i in predList if i >= higherthan]
165
+ less = [i for i in predList if i < higherthan]
166
+ else:
167
+ print("'on' must be either value or return")
168
+ return (len(over)/(len(over)+len(less)))
169
+
170
+ import matplotlib.pyplot as plt
171
+ import seaborn as sns
172
+ def simulate_mc(data, days, iterations, return_type='log', plot=True):
173
+ # Generate daily returns
174
+ returns = daily_returns(data, days, iterations, return_type)
175
+ # Create empty matrix
176
+ price_list = np.zeros_like(returns)
177
+ # Put the last actual price in the first row of matrix.
178
+ price_list[0] = data.iloc[-1]
179
+ # Calculate the price of each day
180
+ for t in range(1,days):
181
+ price_list[t] = price_list[t-1]*returns[t]
182
+
183
+ # Plot Option
184
+ if plot == True:
185
+ x = pd.DataFrame(price_list).iloc[-1]
186
+ fig, ax = plt.subplots(1,2, figsize=(14,4))
187
+ sns.distplot(x, ax=ax[0])
188
+ sns.distplot(x, hist_kws={'cumulative':True},kde_kws={'cumulative':True},ax=ax[1])
189
+ plt.xlabel("Stock Price")
190
+ plt.savefig('stock_price_distribution.png')
191
+ plt.show()
192
+
193
+ #CAPM and Sharpe Ratio
194
+
195
+ # Printing information about stock
196
+ try:
197
+ [print(nam) for nam in data.columns]
198
+ except:
199
+ print(data.name)
200
+ print(f"Days: {days-1}")
201
+ print(f"Expected Value: ${round(pd.DataFrame(price_list).iloc[-1].mean(),2)}")
202
+ print(f"Return: {round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(),2)}%")
203
+ print(f"Probability of Breakeven: {probs_find(pd.DataFrame(price_list),0, on='return')}")
204
+ output = {
205
+ "Days": days-1,
206
+ "Expected Value": round(pd.DataFrame(price_list).iloc[-1].mean(), 2),
207
+ "Return": round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(), 2),
208
+ "Probability of Breakeven": probs_find(pd.DataFrame(price_list), 0, on='return')
209
+ }
210
+ return (json.dumps(output))
211
+
212
+
213
+ # return pd.DataFrame(price_list)
214
+
215
+ # set Variables
216
+ def get_stock_data(tickers, days):
217
+ api_key = os.getenv('ALPHAVANTAGE_API_KEY')
218
+ # Placeholder - This is where you'd fetch and process the actual stock data
219
+ # using libraries like pandas-datareader, yfinance, etc.
220
+ data = import_stock_data_alphavantage(tickers, api_key)
221
+ print(data.head())
222
+ log_return = log_returns(data)
223
+ print(data)
224
+ beta_sharpe(data)
225
+ drift_calc(data)
226
+ print(drift_calc(data))
227
+ dr = daily_returns(data, 2, 3)
228
+ item = simulate_mc(data, days, 2000, 'log')
229
+ print(item)
230
+ return {item}
231
+
232
+
233
+
234
+ # Create Gradio interface elements
235
+ ticker_input = gr.Textbox(lines=1, placeholder="Enter tickers separated by commas (e.g., AAPL, TSLA)")
236
+ days_input = gr.Number(value=180, label="Number of Days")
237
+
238
+ iface = gr.Interface(
239
+ fn=get_stock_data,
240
+ inputs=[ticker_input, days_input],
241
+ outputs="text",
242
+ title="Stock Data Analyzer"
243
+ )
244
+
245
+ iface.launch(share=True)
client-test.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from gradio_client import Client
2
+
3
+ client = Client("http://127.0.0.1:7866/")
4
+ result = client.predict(
5
+ "UI", # str in 'tickers' Textbox component
6
+ 14, # float in 'Number of Days' Number component
7
+ api_name="/predict"
8
+ )
9
+ print(result)
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ pandas
3
+ pandas_datareader
4
+ matplotlib
5
+ scipy
6
+ seaborn
7
+ alpha_vantage
8
+ gradio
9
+ gradio_client
10
+ boto3
testimage-push.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import boto3
2
+ import os
3
+
4
+ # Make aws_access_key_id and aws_secret_access_key as environment variables
5
+ aws_access_key_id_env = os.environ['AWS_ACCESS_KEY_ID']
6
+ aws_secret_access_key_env = os.environ['AWS_SECRET_ACCESS_KEY']
7
+
8
+
9
+ # Let's use S3
10
+ s3 = boto3.resource(
11
+ service_name='s3',
12
+ aws_access_key_id=aws_access_key_id_env,
13
+ aws_secret_access_key=aws_secret_access_key_env,
14
+ endpoint_url='https://s3.tebi.io'
15
+ )
16
+
17
+ # Print out bucket names
18
+ for bucket in s3.buckets.all():
19
+ print(bucket.name)
20
+
21
+ # Upload a new file
22
+ data = open('stock_price_distribution.png', 'rb')
23
+ s3.Bucket('montecarlo-automated-images').put_object(Key='stock_price_distribution.png', Body=data)