Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
import torch | |
import phonemizer | |
import librosa | |
import base64 | |
def lark(audioAsB64): | |
# convert b64 audio to wav | |
with open("audio.wav", "wb") as preWaveform: | |
preWaveform.write(base64.b64encode()) | |
# processing | |
processor = Wav2Vec2Processor.from_pretrained( | |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft" | |
) | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") | |
waveform, sample_rate = librosa.load( | |
"harvard.wav", sr=16000 | |
) # Downsample 44.1kHz to 8kHz | |
input_values = processor( | |
waveform, sampling_rate=sample_rate, return_tensors="pt" | |
).input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids) | |
return transcription | |
iface = gr.Interface(fn=lark, inputs="text", outputs="text") | |
iface.launch() | |