Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,66 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
import numpy as np
|
5 |
import gradio as gr
|
6 |
|
7 |
+
# Load pre-trained models and feature extractors
|
8 |
+
seg_feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
9 |
+
seg_model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
10 |
+
depth_feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
11 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
12 |
|
13 |
+
def process_image(image):
|
14 |
+
# Preprocess the input image
|
15 |
+
image = image.resize((512, 512))
|
16 |
+
|
17 |
+
# Perform semantic segmentation
|
18 |
+
seg_inputs = seg_feature_extractor(images=image, return_tensors="pt")
|
19 |
+
with torch.no_grad():
|
20 |
+
seg_outputs = seg_model(**seg_inputs)
|
21 |
+
seg_logits = seg_outputs.logits
|
22 |
+
segmentation = torch.argmax(seg_logits, dim=1)[0].numpy()
|
23 |
+
|
24 |
+
# Create binary mask for 'person' class
|
25 |
+
person_class_index = 12
|
26 |
+
binary_mask = (segmentation == person_class_index).astype(np.uint8) * 255
|
27 |
+
|
28 |
+
# Perform depth estimation
|
29 |
+
depth_inputs = depth_feature_extractor(images=image, return_tensors="pt")
|
30 |
+
with torch.no_grad():
|
31 |
+
depth_outputs = depth_model(**depth_inputs)
|
32 |
+
predicted_depth = depth_outputs.predicted_depth[0].cpu().numpy()
|
33 |
+
normalized_depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
34 |
+
inverted_depth = 1 - normalized_depth
|
35 |
+
depth_weight_resized = np.array(Image.fromarray((inverted_depth * 255).astype(np.uint8)).resize((512, 512))) / 255.0
|
36 |
+
depth_weight_resized = depth_weight_resized[:, :, np.newaxis]
|
37 |
+
|
38 |
+
# Create blurred background effect
|
39 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=15))
|
40 |
+
original_np = np.array(image).astype(np.float32)
|
41 |
+
blurred_np = np.array(blurred_image).astype(np.float32)
|
42 |
+
composite_np = (1 - depth_weight_resized) * original_np + depth_weight_resized * blurred_np
|
43 |
+
composite_image = Image.fromarray(np.clip(composite_np, 0, 255).astype(np.uint8))
|
44 |
+
|
45 |
+
# Return results
|
46 |
+
binary_mask_image = Image.fromarray(binary_mask)
|
47 |
+
depth_map_image = Image.fromarray((normalized_depth * 255).astype(np.uint8))
|
48 |
+
return image, binary_mask_image, depth_map_image, composite_image
|
49 |
+
|
50 |
+
# Create Gradio interface
|
51 |
+
interface = gr.Interface(
|
52 |
+
fn=process_image,
|
53 |
+
inputs=gr.inputs.Image(type="pil"),
|
54 |
+
outputs=[
|
55 |
+
gr.outputs.Image(type="pil", label="Original Image"),
|
56 |
+
gr.outputs.Image(type="pil", label="Segmentation Mask"),
|
57 |
+
gr.outputs.Image(type="pil", label="Depth Map"),
|
58 |
+
gr.outputs.Image(type="pil", label="Blurred Background Effect"),
|
59 |
+
],
|
60 |
+
title="Semantic Segmentation and Depth Estimation",
|
61 |
+
description="Upload an image to generate a segmentation mask, depth map, and blurred background effect."
|
62 |
+
)
|
63 |
+
|
64 |
+
# Launch the interface
|
65 |
+
if __name__ == "__main__":
|
66 |
+
interface.launch()
|