Spaces:
Runtime error
Runtime error
File size: 8,634 Bytes
2d12f2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import datetime
import os
import fastf1
import pandas as pd
from fastapi import FastAPI
from fastapi.responses import FileResponse, HTMLResponse
from pydantic import BaseModel
import available_data
app = FastAPI()
@app.get("/", response_model=None)
async def root():
return HTMLResponse(
content="""<iframe src="https://tracinginsights-f1-analysis.hf.space" frameborder="0" style="width:100%; height:100%;" scrolling="yes" allowfullscreen:"yes"></iframe>""",
status_code=200)
@app.get("/years", response_model=None)
def years_available() -> any:
# make a list from 2018 to current year
current_year = datetime.datetime.now().year
years = list(range(2018, current_year+1))
# reverse the list to get the latest year first
years.reverse()
years = [{"label": str(year), "value": year} for year in years]
return {"years": years}
# format for events {"events":[{"label":"Saudi Arabian Grand Prix","value":2},{"label":"Bahrain Grand Prix","value":1},{"label":"Pre-Season Testing","value":"t1"}]}
@app.get("/{year}", response_model=None)
def events_available(year: int) -> any:
# get events available for a given year
data = available_data.LatestData(year)
events = data.get_events()
events = [{"label": event, "value": i} for i, event in enumerate(events)]
events.reverse()
return {"events": events}
# format for sessions {"sessions":[{"label":"FP1","value":"FP1"},{"label":"FP2","value":"FP2"},{"label":"FP3","value":"FP3"},{"label":"Qualifying","value":"Q"},{"label":"Race","value":"R"}]}
@app.get("/{year}/{event}", response_model=None)
def sessions_available(year: int, event: str) -> any:
# get sessions available for a given year and event
data = available_data.LatestData(year)
sessions = data.get_sessions(event)
sessions = [{"label": session, "value": session} for session in sessions]
return {"sessions": sessions}
# format for drivers {"drivers":[{"color":"#fff500","label":"RIC","value":"RIC"},{"color":"#ff8700","label":"NOR","value":"NOR"},{"color":"#c00000","label":"VET","value":"VET"},{"color":"#0082fa","label":"LAT","value":"LAT"},{"color":"#787878","label":"GRO","value":"GRO"},{"color":"#ffffff","label":"GAS","value":"GAS"},{"color":"#f596c8","label":"STR","value":"STR"},{"color":"#787878","label":"MAG","value":"MAG"},{"color":"#0600ef","label":"ALB","value":"ALB"},{"color":"#ffffff","label":"KVY","value":"KVY"},{"color":"#fff500","label":"OCO","value":"OCO"},{"color":"#0600ef","label":"VER","value":"VER"},{"color":"#00d2be","label":"HAM","value":"HAM"},{"color":"#ff8700","label":"SAI","value":"SAI"},{"color":"#00d2be","label":"BOT","value":"BOT"},{"color":"#960000","label":"GIO","value":"GIO"}]}
@app.get("/{year}/{event}/{session}", response_model=None)
def session_drivers(year: int, event: str, session: str) -> any:
# get drivers available for a given year, event and session
f1session = fastf1.get_session(year, event, session)
f1session.load(telemetry=False, weather=False, messages=False)
laps = f1session.laps
team_colors = available_data.team_colors(year)
# add team_colors dict to laps on Team column
drivers = laps.Driver.unique()
# for each driver in drivers, get the Team column from laps and get the color from team_colors dict
drivers = [{"color": team_colors[laps[laps.Driver ==
driver].Team.iloc[0]], "label": driver, "value": driver} for driver in drivers]
return {"drivers": drivers}
# format for chartData {"chartData":[{"lapnumber":1},{
# "VER":91.564,
# "VER_compound":"SOFT",
# "VER_compound_color":"#FF5733",
# "lapnumber":2
# },{"lapnumber":3},{"VER":90.494,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":4},{"lapnumber":5},{"VER":90.062,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":6},{"lapnumber":7},{"VER":89.815,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":8},{"VER":105.248,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":9},{"lapnumber":10},{"VER":89.79,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":11},{"VER":145.101,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":12},{"lapnumber":13},{"VER":89.662,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":14},{"lapnumber":15},{"VER":89.617,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":16},{"lapnumber":17},{"VER":140.717,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":18}]}
@app.get("/{year}/{event}/{session}/{driver}", response_model=None)
def laps_data(year: int, event: str, session: str, driver: str) -> any:
# get drivers available for a given year, event and session
f1session = fastf1.get_session(year, event, session)
f1session.load(telemetry=False, weather=False, messages=False)
laps = f1session.laps
team_colors = available_data.team_colors(year)
# add team_colors dict to laps on Team column
drivers = laps.Driver.unique()
# for each driver in drivers, get the Team column from laps and get the color from team_colors dict
drivers = [{"color": team_colors[laps[laps.Driver ==
driver].Team.iloc[0]], "label": driver, "value": driver} for driver in drivers]
driver_laps = laps.pick_driver(driver)
driver_laps['LapTime'] = driver_laps['LapTime'].dt.total_seconds()
compound_colors = {
"SOFT": "#FF0000",
"MEDIUM": "#FFFF00",
"HARD": "#FFFFFF",
"INTERMEDIATE": "#00FF00",
"WET": "#088cd0",
}
driver_laps_data = []
for _, row in driver_laps.iterrows():
if row['LapTime'] > 0:
lap = {f"{driver}": row['LapTime'],
f"{driver}_compound": row['Compound'],
f"{driver}_compound_color": compound_colors[row['Compound']],
"lapnumber": row['LapNumber']}
else:
lap = {"lapnumber": row['LapNumber']}
driver_laps_data.append(lap)
return {"chartData": driver_laps_data}
@app.get("/{year}/{event}/{session}/{driver}/{lap_number}", response_model=None)
def telemetry_data(year: int, event: str, session: str, driver: str, lap_number: int) -> any:
f1session = fastf1.get_session(year, event, session)
f1session.load(telemetry=True, weather=False, messages=False)
laps = f1session.laps
driver_laps = laps.pick_driver(driver)
driver_laps['LapTime'] = driver_laps['LapTime'].dt.total_seconds()
# get the telemetry for lap_number
selected_lap = driver_laps[driver_laps.LapNumber == lap_number]
telemetry = selected_lap.get_telemetry()
telemetry['Time'] = telemetry['Time'].dt.total_seconds()
laptime = selected_lap.LapTime.values[0]
data_key = f"{driver} - Lap {int(lap_number)} - {year} {session} [{int(laptime//60)}:{laptime%60}]"
brake_tel = []
drs_tel = []
gear_tel = []
rpm_tel = []
speed_tel = []
throttle_tel = []
time_tel = []
track_map = []
for _, row in telemetry.iterrows():
brake = {"x": row['Distance'],
"y": row['Brake'],
}
brake_tel.append(brake)
drs = {"x": row['Distance'],
"y": row['DRS'],
}
drs_tel.append(drs)
gear = {"x": row['Distance'],
"y": row['nGear'],
}
gear_tel.append(gear)
rpm = {"x": row['Distance'],
"y": row['RPM'],
}
rpm_tel.append(rpm)
speed = {"x": row['Distance'],
"y": row['Speed'],
}
speed_tel.append(speed)
throttle = {"x": row['Distance'],
"y": row['Throttle'],
}
throttle_tel.append(throttle)
time = {"x": row['Distance'],
"y": row['Time'],
}
time_tel.append(time)
track = {"x": row['X'],
"y": row['Y'],
}
track_map.append(track)
telemetry_data = {
"telemetryData":{
"brake": brake_tel,
"dataKey": data_key,
"drs": drs_tel,
"gear": gear_tel,
"rpm": rpm_tel,
"speed": speed_tel,
"throttle": throttle_tel,
"time": time_tel,
"trackMap": track_map,
}
}
return telemetry_data
|