Spaces:
Runtime error
Runtime error
Commit
·
666d174
1
Parent(s):
f6a40e3
Update main.py
Browse files
main.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import datetime
|
2 |
import os
|
3 |
import streamlit as st
|
|
|
|
|
4 |
import fastf1
|
5 |
import pandas as pd
|
6 |
from fastapi import FastAPI
|
@@ -20,6 +22,153 @@ app.add_middleware(
|
|
20 |
allow_headers=["*"],
|
21 |
)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@st.cache_data
|
24 |
@app.get("/", response_model=None)
|
25 |
async def root():
|
@@ -150,6 +299,11 @@ def telemetry_data(year: int, event: str | int, session: str, driver: str, lap_n
|
|
150 |
selected_lap = driver_laps[driver_laps.LapNumber == lap_number]
|
151 |
|
152 |
telemetry = selected_lap.get_telemetry()
|
|
|
|
|
|
|
|
|
|
|
153 |
telemetry['Time'] = telemetry['Time'].dt.total_seconds()
|
154 |
|
155 |
laptime = selected_lap.LapTime.values[0]
|
@@ -165,6 +319,8 @@ def telemetry_data(year: int, event: str | int, session: str, driver: str, lap_n
|
|
165 |
throttle_tel = []
|
166 |
time_tel = []
|
167 |
track_map = []
|
|
|
|
|
168 |
|
169 |
for _, row in telemetry.iterrows():
|
170 |
|
@@ -202,11 +358,23 @@ def telemetry_data(year: int, event: str | int, session: str, driver: str, lap_n
|
|
202 |
"y": row['Time'],
|
203 |
}
|
204 |
time_tel.append(time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
track = {"x": row['X'],
|
207 |
"y": row['Y'],
|
208 |
}
|
209 |
track_map.append(track)
|
|
|
|
|
210 |
|
211 |
telemetry_data = {
|
212 |
"telemetryData":{
|
@@ -218,6 +386,8 @@ def telemetry_data(year: int, event: str | int, session: str, driver: str, lap_n
|
|
218 |
"speed": speed_tel,
|
219 |
"throttle": throttle_tel,
|
220 |
"time": time_tel,
|
|
|
|
|
221 |
"trackMap": track_map,
|
222 |
}
|
223 |
}
|
|
|
1 |
import datetime
|
2 |
import os
|
3 |
import streamlit as st
|
4 |
+
import numpy as np
|
5 |
+
import math
|
6 |
import fastf1
|
7 |
import pandas as pd
|
8 |
from fastapi import FastAPI
|
|
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
+
import math
|
26 |
+
import numpy as np
|
27 |
+
def smooth_derivative(t_in, v_in):
|
28 |
+
|
29 |
+
#
|
30 |
+
# Function to compute a smooth estimation of a derivative.
|
31 |
+
# [REF: http://holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/]
|
32 |
+
#
|
33 |
+
|
34 |
+
# Configuration
|
35 |
+
#
|
36 |
+
# Derivative method: two options: 'smooth' or 'centered'. Smooth is more conservative
|
37 |
+
# but helps to supress the very noisy signals. 'centered' is more agressive but more noisy
|
38 |
+
method = "smooth"
|
39 |
+
|
40 |
+
t = t_in.copy()
|
41 |
+
v = v_in.copy()
|
42 |
+
|
43 |
+
# (0) Prepare inputs
|
44 |
+
|
45 |
+
# (0.1) Time needs to be transformed to seconds
|
46 |
+
try:
|
47 |
+
for i in range(0, t.size):
|
48 |
+
t.iloc[i] = t.iloc[i].total_seconds()
|
49 |
+
except:
|
50 |
+
pass
|
51 |
+
|
52 |
+
t = np.array(t)
|
53 |
+
v = np.array(v)
|
54 |
+
|
55 |
+
# (0.1) Assert they have the same size
|
56 |
+
assert t.size == v.size
|
57 |
+
|
58 |
+
# (0.2) Initialize output
|
59 |
+
dvdt = np.zeros(t.size)
|
60 |
+
|
61 |
+
# (1) Manually compute points out of the stencil
|
62 |
+
|
63 |
+
# (1.1) First point
|
64 |
+
dvdt[0] = (v[1] - v[0]) / (t[1] - t[0])
|
65 |
+
|
66 |
+
# (1.2) Second point
|
67 |
+
dvdt[1] = (v[2] - v[0]) / (t[2] - t[0])
|
68 |
+
|
69 |
+
# (1.3) Third point
|
70 |
+
dvdt[2] = (v[3] - v[1]) / (t[3] - t[1])
|
71 |
+
|
72 |
+
# (1.4) Last points
|
73 |
+
n = t.size
|
74 |
+
dvdt[n - 1] = (v[n - 1] - v[n - 2]) / (t[n - 1] - t[n - 2])
|
75 |
+
dvdt[n - 2] = (v[n - 1] - v[n - 3]) / (t[n - 1] - t[n - 3])
|
76 |
+
dvdt[n - 3] = (v[n - 2] - v[n - 4]) / (t[n - 2] - t[n - 4])
|
77 |
+
|
78 |
+
# (2) Compute the rest of the points
|
79 |
+
if method == "smooth":
|
80 |
+
c = [5.0 / 32.0, 4.0 / 32.0, 1.0 / 32.0]
|
81 |
+
for i in range(3, t.size - 3):
|
82 |
+
for j in range(1, 4):
|
83 |
+
dvdt[i] += (
|
84 |
+
2 * j * c[j - 1] * (v[i + j] - v[i - j]) /
|
85 |
+
(t[i + j] - t[i - j])
|
86 |
+
)
|
87 |
+
elif method == "centered":
|
88 |
+
for i in range(3, t.size - 2):
|
89 |
+
for j in range(1, 4):
|
90 |
+
dvdt[i] = (v[i + 1] - v[i - 1]) / (t[i + 1] - t[i - 1])
|
91 |
+
|
92 |
+
return dvdt
|
93 |
+
|
94 |
+
|
95 |
+
def truncated_remainder(dividend, divisor):
|
96 |
+
divided_number = dividend / divisor
|
97 |
+
divided_number = (
|
98 |
+
-int(-divided_number) if divided_number < 0 else int(divided_number)
|
99 |
+
)
|
100 |
+
|
101 |
+
remainder = dividend - divisor * divided_number
|
102 |
+
|
103 |
+
return remainder
|
104 |
+
|
105 |
+
|
106 |
+
def transform_to_pipi(input_angle):
|
107 |
+
pi = math.pi
|
108 |
+
revolutions = int((input_angle + np.sign(input_angle) * pi) / (2 * pi))
|
109 |
+
|
110 |
+
p1 = truncated_remainder(input_angle + np.sign(input_angle) * pi, 2 * pi)
|
111 |
+
p2 = (
|
112 |
+
np.sign(
|
113 |
+
np.sign(input_angle)
|
114 |
+
+ 2
|
115 |
+
* (
|
116 |
+
np.sign(
|
117 |
+
math.fabs(
|
118 |
+
(truncated_remainder(input_angle + pi, 2 * pi)) / (2 * pi)
|
119 |
+
)
|
120 |
+
)
|
121 |
+
- 1
|
122 |
+
)
|
123 |
+
)
|
124 |
+
) * pi
|
125 |
+
|
126 |
+
output_angle = p1 - p2
|
127 |
+
|
128 |
+
return output_angle, revolutions
|
129 |
+
|
130 |
+
|
131 |
+
def remove_acceleration_outliers(acc):
|
132 |
+
|
133 |
+
acc_threshold_g = 7.5
|
134 |
+
if math.fabs(acc[0]) > acc_threshold_g:
|
135 |
+
acc[0] = 0.0
|
136 |
+
|
137 |
+
for i in range(1, acc.size - 1):
|
138 |
+
if math.fabs(acc[i]) > acc_threshold_g:
|
139 |
+
acc[i] = acc[i - 1]
|
140 |
+
|
141 |
+
if math.fabs(acc[-1]) > acc_threshold_g:
|
142 |
+
acc[-1] = acc[-2]
|
143 |
+
|
144 |
+
return acc
|
145 |
+
|
146 |
+
|
147 |
+
def compute_accelerations(telemetry):
|
148 |
+
|
149 |
+
v = np.array(telemetry["Speed"]) / 3.6
|
150 |
+
lon_acc = smooth_derivative(telemetry["Time"], v) / 9.81
|
151 |
+
|
152 |
+
dx = smooth_derivative(telemetry["Distance"], telemetry["X"])
|
153 |
+
dy = smooth_derivative(telemetry["Distance"], telemetry["Y"])
|
154 |
+
|
155 |
+
theta = np.zeros(dx.size)
|
156 |
+
theta[0] = math.atan2(dy[0], dx[0])
|
157 |
+
for i in range(0, dx.size):
|
158 |
+
theta[i] = (
|
159 |
+
theta[i - 1] +
|
160 |
+
transform_to_pipi(math.atan2(dy[i], dx[i]) - theta[i - 1])[0]
|
161 |
+
)
|
162 |
+
|
163 |
+
kappa = smooth_derivative(telemetry["Distance"], theta)
|
164 |
+
lat_acc = v * v * kappa / 9.81
|
165 |
+
|
166 |
+
# Remove outliers
|
167 |
+
lon_acc = remove_acceleration_outliers(lon_acc)
|
168 |
+
lat_acc = remove_acceleration_outliers(lat_acc)
|
169 |
+
|
170 |
+
return lon_acc, lat_acc
|
171 |
+
|
172 |
@st.cache_data
|
173 |
@app.get("/", response_model=None)
|
174 |
async def root():
|
|
|
299 |
selected_lap = driver_laps[driver_laps.LapNumber == lap_number]
|
300 |
|
301 |
telemetry = selected_lap.get_telemetry()
|
302 |
+
|
303 |
+
lon_acc, lat_acc = compute_accelerations(telemetry)
|
304 |
+
telemetry["lon_acc"] = lon_acc
|
305 |
+
telemetry["lat_acc"] = lat_acc
|
306 |
+
|
307 |
telemetry['Time'] = telemetry['Time'].dt.total_seconds()
|
308 |
|
309 |
laptime = selected_lap.LapTime.values[0]
|
|
|
319 |
throttle_tel = []
|
320 |
time_tel = []
|
321 |
track_map = []
|
322 |
+
lon_acc_tel = []
|
323 |
+
lat_acc_tel = []
|
324 |
|
325 |
for _, row in telemetry.iterrows():
|
326 |
|
|
|
358 |
"y": row['Time'],
|
359 |
}
|
360 |
time_tel.append(time)
|
361 |
+
|
362 |
+
lon_acc = {"x": row['Distance'],
|
363 |
+
"y": row['lon_acc'],
|
364 |
+
}
|
365 |
+
lon_acc_tel.append(lon_acc)
|
366 |
+
|
367 |
+
lat_acc = {"x": row['Distance'],
|
368 |
+
"y": row['lat_acc'],
|
369 |
+
}
|
370 |
+
lat_acc_tel.append(lat_acc)
|
371 |
|
372 |
track = {"x": row['X'],
|
373 |
"y": row['Y'],
|
374 |
}
|
375 |
track_map.append(track)
|
376 |
+
|
377 |
+
|
378 |
|
379 |
telemetry_data = {
|
380 |
"telemetryData":{
|
|
|
386 |
"speed": speed_tel,
|
387 |
"throttle": throttle_tel,
|
388 |
"time": time_tel,
|
389 |
+
"lon_acc": lon_acc_tel,
|
390 |
+
"lat_acc": lat_acc_tel
|
391 |
"trackMap": track_map,
|
392 |
}
|
393 |
}
|