Spaces:
Runtime error
Runtime error
File size: 5,722 Bytes
e190970 753194f 0e74637 cf4f63b a1d780d e190970 a1d780d 753194f e638825 a1d780d b9cce0e a1d780d b9cce0e a1d780d e638825 0e74637 cf4f63b 57845b8 cf4f63b 3cc58a2 a1d780d 57845b8 a1d780d 57845b8 a1d780d 57845b8 2e0cc12 a1d780d e638825 a1d780d e638825 a1d780d c3a14f0 e638825 b9cce0e a1d780d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import pandas as pd
import streamlit as st
import wandb
from dashboard_utils.bubbles import get_global_metrics, get_new_bubble_data, get_leaderboard
from dashboard_utils.main_metrics import get_main_metrics
from streamlit_observable import observable
import time
import requests
import streamlit as st
from streamlit_lottie import st_lottie
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
# Only need to set these here as we are add controls outside of Hydralit, to customise a run Hydralit!
st.set_page_config(page_title="Dashboard", layout="wide")
st.markdown("<h1 style='text-align: center;'>Dashboard</h1>", unsafe_allow_html=True)
key_figures_margin_left, key_figures_c1, key_figures_c2, key_figures_c3, key_figures_margin_right = st.columns(
(2, 1, 1, 1, 2)
)
chart_c1, chart_c2 = st.columns((3, 2))
lottie_url_loading = "https://assets5.lottiefiles.com/packages/lf20_OdNgAj.json"
lottie_loading = load_lottieurl(lottie_url_loading)
with key_figures_c1:
st.caption("\# of contributing users")
placeholder_key_figures_c1 = st.empty()
with placeholder_key_figures_c1:
st_lottie(lottie_loading, height=100, key="loading_key_figure_c1")
with key_figures_c2:
st.caption("\# active users")
placeholder_key_figures_c2 = st.empty()
with placeholder_key_figures_c2:
st_lottie(lottie_loading, height=100, key="loading_key_figure_c2")
with key_figures_c3:
st.caption("Total runtime")
placeholder_key_figures_c3 = st.empty()
with placeholder_key_figures_c3:
st_lottie(lottie_loading, height=100, key="loading_key_figure_c3")
with chart_c1:
st.subheader("Metrics over time")
st.caption("Training Loss")
placeholder_chart_c1_1 = st.empty()
with placeholder_chart_c1_1:
st_lottie(lottie_loading, height=100, key="loading_c1_1")
st.caption("Number of alive runs over time")
placeholder_chart_c1_2 = st.empty()
with placeholder_chart_c1_2:
st_lottie(lottie_loading, height=100, key="loading_c1_2")
st.caption("Number of steps")
placeholder_chart_c1_3 = st.empty()
with placeholder_chart_c1_3:
st_lottie(lottie_loading, height=100, key="loading_c1_3")
with chart_c2:
st.subheader("Global metrics")
st.caption("Collaborative training participants")
placeholder_chart_c2_1 = st.empty()
with placeholder_chart_c2_1:
st_lottie(lottie_loading, height=100, key="loading_c2_1")
st.write("Chart showing participants of the collaborative-training. Circle radius is relative to the total number of "
"processed batches, the circle is greyed if the participant is not active. Every purple square represents an "
"active device, darker color corresponds to higher performance.")
st.caption("Leaderboard")
placeholder_chart_c2_3 = st.empty()
with placeholder_chart_c2_3:
st_lottie(lottie_loading, height=100, key="loading_c2_2")
wandb.login(anonymous="must")
steps, dates, losses, alive_peers = get_main_metrics()
source = pd.DataFrame({"steps": steps, "loss": losses, "alive participants": alive_peers, "date": dates})
placeholder_chart_c1_1.vega_lite_chart(
source,
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"description": "Training Loss",
"mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}},
"encoding": {"x": {"field": "date", "type": "temporal"}, "y": {"field": "loss", "type": "quantitative"}},
"config": {"axisX": {"labelAngle": -40}},
},
use_container_width=True,
)
placeholder_chart_c1_2.vega_lite_chart(
source,
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"description": "Alive participants",
"mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}},
"encoding": {
"x": {"field": "date", "type": "temporal"},
"y": {"field": "alive participants", "type": "quantitative"},
},
"config": {"axisX": {"labelAngle": -40}},
},
use_container_width=True,
)
placeholder_chart_c1_3.vega_lite_chart(
source,
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"description": "Training Loss",
"mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}},
"encoding": {"x": {"field": "date", "type": "temporal"}, "y": {"field": "steps", "type": "quantitative"}},
"config": {"axisX": {"labelAngle": -40}},
},
use_container_width=True,
)
serialized_data, profiles = get_new_bubble_data()
df_leaderboard = get_leaderboard(serialized_data)
observable(
"_",
notebook="d/9ae236a507f54046", # "@huggingface/participants-bubbles-chart",
targets=["c_noaws"],
redefine={"serializedData": serialized_data, "profileSimple": profiles, "width": 0},
render_empty=True,
)
placeholder_chart_c2_3.dataframe(df_leaderboard[["User", "Total time contributed"]])
global_metrics = get_global_metrics(serialized_data)
placeholder_key_figures_c1.write(f"<b>{global_metrics['num_contributing_users']}</b>", unsafe_allow_html=True)
placeholder_key_figures_c2.write(f"<b>{global_metrics['num_active_users']}</b>", unsafe_allow_html=True)
placeholder_key_figures_c3.write(f"<b>{global_metrics['total_runtime']}</b>", unsafe_allow_html=True)
with placeholder_chart_c2_1:
observable(
"Participants",
notebook="d/9ae236a507f54046", # "@huggingface/participants-bubbles-chart",
targets=["c_noaws"],
redefine={"serializedData": serialized_data, "profileSimple": profiles},
)
|