Spaces:
Runtime error
Runtime error
File size: 12,313 Bytes
e4e0162 a3cc2e5 967234c e4e0162 a3cc2e5 b77c9c6 e4e0162 ae1f197 f320162 c47b3e3 f29cff9 ae1f197 efb5973 f320162 ae1f197 f29cff9 f320162 f29cff9 ae1f197 40b135b ae1f197 ea006a3 e4e0162 cd41564 ea006a3 99e5af8 ea006a3 40b135b f320162 ea006a3 f320162 ea006a3 40b135b ea006a3 e4e0162 5692092 cd41564 a80d4f2 cd41564 5692092 d9d28c8 7036129 5692092 d9d28c8 7036129 5692092 7036129 5692092 d9d28c8 7036129 5692092 d9d28c8 7036129 5692092 7036129 5692092 0c404dc c9cd053 7036129 0c404dc 7036129 0c404dc 7036129 0c404dc 5692092 c9cd053 7036129 5692092 7036129 5692092 7036129 5692092 f320162 24b94fd 4e460ca e4e0162 c9cd053 e4e0162 4e460ca 6b9f2b7 e4e0162 24b94fd f320162 e4e0162 346e2ba f320162 4e460ca 24b94fd f29cff9 e4e0162 0c404dc 5692092 0c404dc cb13d58 e4e0162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
#ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it",
"meta-llama/Llama-2-7b-chat-hf",
"codellama/CodeLlama-70b-Instruct-hf",
"openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mixtral-8x7B-Instruct-v0.2",
"visheratin/MC-LLaVA-3b",
]
client_z=[]
def load_models(inp,new_models):
out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()]
print(type(inp))
print(inp)
print(new_models[inp[0]])
client_z.clear()
for z,ea in enumerate(inp):
client_z.append(InferenceClient(new_models[inp[z]]))
out_box[z]=(gr.update(label=new_models[inp[z]]))
return out_box[0],out_box[1],out_box[2],out_box[3]
def format_prompt_default(message, history):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}\n"
print(prompt)
prompt += f"{bot_response}\n"
print(prompt)
prompt += f"{message}\n"
return prompt
def format_prompt_gemma(message, history):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}\n"
print(prompt)
prompt += f"{bot_response}\n"
print(prompt)
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
return prompt
def format_prompt_mixtral(message, history):
prompt = "<s>"
if history:
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def format_prompt_choose(message, history, model_name, new_models):
if "gemma" in new_models[model_name].lower() and "it" in new_models[model_name].lower():
return format_prompt_gemma(message,history)
if "mixtral" in new_models[model_name].lower():
return format_prompt_mixtral(message,history)
else:
return format_prompt_default(message,history)
mega_hist=[[],[],[],[]]
def chat_inf_tree(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
if len(client_choice)>=hid_val:
client=client_z[int(hid_val)-1]
if history:
mega_hist[hid_val-1]=history
#history = []
hist_len=0
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1])
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)]
mega_hist[hid_val-1].append((prompt,output))
yield mega_hist[hid_val-1]
else:
yield None
def chat_inf_a(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
if len(client_choice)>=hid_val:
if system_prompt:
system_prompt=f'{system_prompt}, '
client1=client_z[int(hid_val)-1]
if not history:
history = []
hist_len=0
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[0])
stream1 = client1.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream1:
output += response.token.text
yield [(prompt,output)]
history.append((prompt,output))
yield history
else:
yield None
def chat_inf_b(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
if len(client_choice)>=hid_val:
if system_prompt:
system_prompt=f'{system_prompt}, '
client2=client_z[int(hid_val)-1]
if not history:
history = []
hist_len=0
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[1])
stream2 = client2.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream2:
output += response.token.text
yield [(prompt,output)]
history.append((prompt,output))
yield history
else:
yield None
def chat_inf_c(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
if len(client_choice)>=hid_val:
if system_prompt:
system_prompt=f'{system_prompt}, '
client3=client_z[int(hid_val)-1]
if not history:
history = []
hist_len=0
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[2])
stream3 = client3.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream3:
output += response.token.text
yield [(prompt,output)]
history.append((prompt,output))
yield history
else:
yield None
def chat_inf_d(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
if len(client_choice)>=hid_val:
if system_prompt:
system_prompt=f'{system_prompt}, '
client4=client_z[int(hid_val)-1]
if not history:
history = []
hist_len=0
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt_choose(f"{system_prompt}{prompt}", history, client_choice[3])
stream4 = client4.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream4:
output += response.token.text
yield [(prompt,output)]
history.append((prompt,output))
yield history
else:
yield None
def add_new_model(inp, cur):
cur.append(inp)
return cur,gr.update(choices=[z for z in cur])
def load_new(models=models):
return models
def clear_fn():
return None,None,None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
new_models=gr.State([])
gr.HTML("""<center><h1 style='font-size:xx-large;'>Chatbot Model Compare</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
with gr.Row():
chat_a = gr.Chatbot(height=500)
chat_b = gr.Chatbot(height=500)
with gr.Row():
chat_c = gr.Chatbot(height=500)
chat_d = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],max_choices=4,multiselect=True,interactive=True)
add_model=gr.Textbox(label="New Model")
add_btn=gr.Button("Add Model")
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
hid1=gr.Number(value=1,visible=False)
hid2=gr.Number(value=2,visible=False)
hid3=gr.Number(value=3,visible=False)
hid4=gr.Number(value=4,visible=False)
app.load(load_new,None,new_models)
add_btn.click(add_new_model,[add_model,new_models],[new_models,client_choice])
client_choice.change(load_models,client_choice,[chat_a,chat_b,chat_c,chat_d])
#im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
#chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf_a,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a)
go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf_b,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b)
go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf_c,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c)
go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf_d,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d)
stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d])
app.queue(default_concurrency_limit=10).launch()
|