tree3po commited on
Commit
962d2ba
·
verified ·
1 Parent(s): 06fb948

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -16,7 +16,7 @@ token=""
16
  repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
17
  emb = "sentence-transformers/all-mpnet-base-v2"
18
  hf = HuggingFaceEmbeddings(model_name=emb)
19
- db = Chroma(persist_directory="./chroma_langchain_db")
20
  #db.persist()
21
  # Load the document, split it into chunks, embed each chunk and load it into the vector store.
22
  #raw_documents = TextLoader('state_of_the_union.txt').load()
@@ -25,7 +25,7 @@ def embed_fn(inp):
25
  documents = text_splitter.split_text(inp)
26
  out_emb= hf.embed_documents(documents)
27
  string_representation = dumps(out_emb, pretty=True)
28
- db.from_texts(documents,HuggingFaceEmbeddings(model_name=emb))
29
  def proc_doc(doc_in):
30
  for doc in doc_in:
31
  if doc.endswith(".txt"):
@@ -57,11 +57,13 @@ def read_pdf(pdf_path):
57
  return text
58
  def run_llm(input_text,history):
59
  MAX_TOKENS=20000
60
- qur= hf.embed_query(input_text)
61
- docs = db.similarity_search_by_vector(qur, k=3)
62
-
63
- print(docs)
64
-
 
 
65
  callbacks = [StreamingStdOutCallbackHandler()]
66
  llm = HuggingFaceEndpoint(
67
  endpoint_url=repo_id,
 
16
  repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
17
  emb = "sentence-transformers/all-mpnet-base-v2"
18
  hf = HuggingFaceEmbeddings(model_name=emb)
19
+ db = Chroma(persist_directory="./chroma_langchain_db",HuggingFaceEmbeddings(model_name=emb))
20
  #db.persist()
21
  # Load the document, split it into chunks, embed each chunk and load it into the vector store.
22
  #raw_documents = TextLoader('state_of_the_union.txt').load()
 
25
  documents = text_splitter.split_text(inp)
26
  out_emb= hf.embed_documents(documents)
27
  string_representation = dumps(out_emb, pretty=True)
28
+ db.from_texts(documents)
29
  def proc_doc(doc_in):
30
  for doc in doc_in:
31
  if doc.endswith(".txt"):
 
57
  return text
58
  def run_llm(input_text,history):
59
  MAX_TOKENS=20000
60
+ try:
61
+ qur= hf.embed_query(input_text)
62
+ docs = db.similarity_search_by_vector(qur, k=3)
63
+
64
+ print(docs)
65
+ except Exception as e:
66
+ print(e)
67
  callbacks = [StreamingStdOutCallbackHandler()]
68
  llm = HuggingFaceEndpoint(
69
  endpoint_url=repo_id,