File size: 2,772 Bytes
e751200
 
 
 
 
 
 
 
 
2d673aa
c269db1
18d2d1f
c269db1
80826f2
c269db1
14122ff
c269db1
10cd0ae
 
 
 
2b85a9e
2d673aa
e751200
becce92
e751200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d2d1f
e4dfe6c
14122ff
10cd0ae
e4dfe6c
 
 
 
 
e751200
 
 
 
 
 
718ddba
e751200
 
 
 
 
 
500075a
e751200
 
 
 
 
 
2b85a9e
 
 
2d673aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import cv2
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from PIL import Image
import torch
import time
import numpy as np
import uuid
import spaces

ver=[0,0,0,0,0,0,6,7,8,9,10,11]
ltr=["n","s","m","1","x"]
tsk=["","-seg","-pose","-obb","-cls"]
#yolov8s.pt
modin=f"yolov{ver[9]}{ltr[1]}{tsk[0]}.pt"
model = YOLO(modin)
annotators = ["Box","RoundBox","BoxCorner","Color",
              "Circle","Dot","Triangle","Elipse","Halo",
              "PercentageBar","Mask","Polygon","Label",
              "RichLabel","Icon","Crop","Blur","Pixelate","HeatMap"]

@spaces.GPU
def stream_object_detection(video):
    SUBSAMPLE=1
    cap = cv2.VideoCapture(video)
    # This means we will output mp4 videos
    video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    desired_fps = fps // SUBSAMPLE
    width  = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
    iterating, frame = cap.read()
    n_frames = 0
    output_video_name = f"output_{uuid.uuid4()}.mp4"
    output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore

    while iterating:
        frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        result = model(Image.fromarray(frame))[0]
        detections = sv.Detections.from_ultralytics(result)
        print(detections)

        box_annotator = eval(f'sv.{annotators[0]}Annotator()')
        
        outp = box_annotator.annotate(
          scene=frame.copy(),
          detections=detections)
        
        #outp = draw_box(frame,detections)
        frame = np.array(outp)
        # Convert RGB to BGR
        frame = frame[:, :, ::-1].copy()
        output_video.write(frame)
        batch = []
        output_video.release()
        yield output_video_name,detections
        output_video_name = f"output_{uuid.uuid4()}.mp4"
        output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
        iterating, frame = cap.read()
        n_frames += 1

with gr.Blocks() as app:
    gr.HTML("<div style='font-size: 50px;font-weight: 800;'>Supervision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>")
    #inp = gr.Image(type="filepath")
    with gr.Row():
        with gr.Column():
            inp = gr.Video()
            btn = gr.Button()
        outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True)
    outp_j = gr.JSON()

    btn.click(stream_object_detection,inp,[outp_v,outp_j])
app.queue().launch()