h2ogpt-chatbot / app.py
trhacknon's picture
Duplicate from h2oai/h2ogpt-chatbot
d7185d6
import functools
import inspect
import sys
import os
import traceback
import typing
from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output, s3up
SEED = 1236
set_seed(SEED)
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
from typing import Union
import numpy as np
import pandas as pd
import fire
import torch
from peft import PeftModel
from transformers import GenerationConfig, StoppingCriteriaList, AutoModel
from accelerate import init_empty_weights, infer_auto_device_map
from prompter import Prompter
from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \
human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower
from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub
is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
is_low_mem = is_hf # assumes run on 24GB consumer GPU
admin_pass = os.getenv("ADMIN_PASS")
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
raise_generate_gpu_exceptions = True
eval_extra_columns = ['prompt', 'response', 'score']
def main(
load_8bit: bool = False,
load_half: bool = True,
infer_devices: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0, # if infer_devices = True and gpu_id != -1
prompt_type: Union[int, str] = None,
# input to generation
temperature: float = None,
top_p: float = None,
top_k: int = None,
num_beams: int = None,
repetition_penalty: float = None,
num_return_sequences: int = None,
do_sample: bool = None,
max_new_tokens: int = None,
min_new_tokens: int = None,
early_stopping: Union[bool, str] = None,
max_time: float = None,
llama_type: bool = None,
debug: bool = False,
save_dir: str = None,
share: bool = True,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
src_lang: str = "English",
tgt_lang: str = "Russian",
gradio: bool = True,
gradio_avoid_processing_markdown: bool = False,
chat: bool = True,
chat_history: int = 4096, # character length of chat context/history
stream_output: bool = True,
show_examples: bool = None,
verbose: bool = False,
h2ocolors: bool = True,
height: int = 400,
show_lora: bool = True,
# set to True to load --base_model after client logs in,
# to be able to free GPU memory when model is swapped
login_mode_if_model0: bool = False,
block_gradio_exit: bool = True,
sanitize_user_prompt: bool = True,
sanitize_bot_response: bool = True,
extra_model_options: typing.List[str] = [],
extra_lora_options: typing.List[str] = [],
score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2',
auto_score: bool = True,
eval_sharegpt_prompts_only: int = 0,
eval_sharegpt_prompts_only_seed: int = 1234,
eval_sharegpt_as_output: bool = False,
):
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
if is_public:
temperature = 0.4
top_p = 0.85
top_k = 70
do_sample = True
if is_low_mem:
base_model = 'h2oai/h2ogpt-oasst1-512-12b'
load_8bit = True
else:
base_model = 'h2oai/h2ogpt-oasst1-512-20b'
if is_low_mem:
load_8bit = True
if is_hf:
# must override share if in spaces
share = False
save_dir = os.getenv('SAVE_DIR', save_dir)
score_model = os.getenv('SCORE_MODEL', score_model)
if score_model == 'None':
score_model = ''
# get defaults
model_lower = base_model.lower()
if not gradio:
# force, else not single response like want to look at
stream_output = False
# else prompt removal can mess up output
chat = False
placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info = \
get_generate_params(model_lower, chat,
stream_output, show_examples,
prompt_type, temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample,
)
if not gradio:
if eval_sharegpt_prompts_only > 0:
# override default examples with shareGPT ones for human-level eval purposes only
eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json'
if not os.path.isfile(eval_filename):
os.system(
'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename)
import json
data = json.load(open(eval_filename, 'rt'))
# focus on data that starts with human, else likely chopped from other data
turn_start = 0 # odd in general
data = [x for x in data if len(x['conversations']) > turn_start + 1 and
x['conversations'][turn_start]['from'] == 'human' and
x['conversations'][turn_start + 1]['from'] == 'gpt']
np.random.seed(eval_sharegpt_prompts_only_seed)
example1 = examples[-1] # pick reference example
examples = []
responses = []
for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)):
assert data[i]['conversations'][turn_start]['from'] == 'human'
instruction = data[i]['conversations'][turn_start]['value']
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
output = data[i]['conversations'][turn_start + 1]['value']
examplenew = example1.copy()
assert not chat, "No gradio must use chat=False, uses nochat isntruct"
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
examplenew[eval_func_param_names.index('context')] = '' # no context
examples.append(examplenew)
responses.append(output)
num_examples = len(examples)
scoring_path = 'scoring'
os.makedirs(scoring_path, exist_ok=True)
if eval_sharegpt_as_output:
used_base_model = 'gpt35'
used_lora_weights = ''
else:
used_base_model = str(base_model.split('/')[-1])
used_lora_weights = str(lora_weights.split('/')[-1])
eval_filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only,
eval_sharegpt_prompts_only_seed,
eval_sharegpt_as_output,
used_base_model,
used_lora_weights)
eval_filename = os.path.join(scoring_path, eval_filename)
with torch.device("cuda"):
# ensure was set right above before examples generated
assert not stream_output, "stream_output=True does not make sense with example loop"
import time
from functools import partial
# get score model
smodel, stokenizer, sdevice = get_score_model(**locals())
if not eval_sharegpt_as_output:
model, tokenizer, device = get_model(**locals())
model_state = [model, tokenizer, device, base_model]
fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir)
else:
assert eval_sharegpt_prompts_only > 0
def get_response(*args, exi=0):
# assumes same ordering of examples and responses
yield responses[exi]
fun = get_response
t0 = time.time()
score_dump = []
import matplotlib.pyplot as plt
for exi, ex in enumerate(examples):
instruction = ex[eval_func_param_names.index('instruction_nochat')]
iinput = ex[eval_func_param_names.index('iinput_nochat')]
context = ex[eval_func_param_names.index('context')]
clear_torch_cache()
print("")
print("START" + "=" * 100)
print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else '')))
print("-" * 105)
# fun yields as generator, so have to iterate over it
# Also means likely do NOT want --stream_output=True, else would show all generations
for res in fun(*tuple(ex), exi=exi):
print(res)
if smodel:
score_with_prompt = False
if score_with_prompt:
data_point = dict(instruction=instruction, input=iinput, context=context)
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
else:
# just raw input and output
assert iinput in [None, ''] # should be no iinput
assert context in [None, ''] # should be no context
prompt = instruction
cutoff_len = 768 if is_low_mem else 2048
inputs = stokenizer(prompt, res,
return_tensors="pt",
truncation=True,
max_length=cutoff_len)
try:
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)),
flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
else:
raise
print("SCORE %s: %s" % (exi, score), flush=True)
score_dump.append(ex + [prompt, res, score])
# dump every score in case abort
df_scores = pd.DataFrame(score_dump,
columns=eval_func_param_names + eval_extra_columns)
df_scores.to_parquet(eval_filename, index=False)
# plot histogram so far
plt.figure(figsize=(10, 10))
plt.hist(df_scores['score'], bins=20)
score_avg = np.mean(df_scores['score'])
score_median = np.median(df_scores['score'])
plt.title("Score avg: %s median: %s" % (score_avg, score_median))
plt.savefig(eval_filename.replace('.parquet', '.png'))
plt.close()
print("END" + "=" * 102)
print("")
t2 = time.time()
print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi)))
t1 = time.time()
print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples))
return eval_filename
if gradio:
go_gradio(**locals())
def get_device():
if torch.cuda.is_available():
device = "cuda"
else:
raise RuntimeError("only cuda supported")
return device
def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
gpu_id=0,
use_auth_token=False):
"""
Ensure model gets on correct device
:param base_model:
:param model_loader:
:param load_half:
:param model_kwargs:
:param reward_type:
:param gpu_id:
:param use_auth_token:
:return:
"""
with init_empty_weights():
from transformers import AutoConfig
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token)
model = AutoModel.from_config(
config,
)
# NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model
# NOTE: Some models require avoiding sharding some layers,
# then would pass no_split_module_classes and give list of those layers.
device_map = infer_auto_device_map(
model,
dtype=torch.float16 if load_half else torch.float32,
)
if hasattr(model, 'model'):
device_map_model = infer_auto_device_map(
model.model,
dtype=torch.float16 if load_half else torch.float32,
)
device_map.update(device_map_model)
print('device_map: %s' % device_map, flush=True)
if gpu_id >= 0:
# FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set.
# So avoid for now, just put on first GPU, unless score_model, put on last
n_gpus = torch.cuda.device_count()
if reward_type:
device_map = {'': n_gpus - 1}
else:
device_map = {'': min(n_gpus - 1, gpu_id)}
load_in_8bit = model_kwargs.get('load_in_8bit', False)
model_kwargs['device_map'] = device_map
if load_in_8bit or not load_half:
model = model_loader.from_pretrained(
base_model,
**model_kwargs,
)
else:
model = model_loader.from_pretrained(
base_model,
**model_kwargs,
).half()
return model
def get_model(
load_8bit: bool = False,
load_half: bool = True,
infer_devices: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
llama_type: bool = None,
reward_type: bool = None,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
compile: bool = True,
**kwargs,
):
"""
:param load_8bit: load model in 8-bit, not supported by all models
:param load_half: load model in 16-bit
:param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case)
For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches
So it is not the default
:param base_model: name/path of base model
:param tokenizer_base_model: name/path of tokenizer
:param lora_weights: name/path
:param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
:param llama_type: whether LLaMa type model
:param reward_type: reward type model for sequence classification
:param local_files_only: use local files instead of from HF
:param resume_download: resume downloads from HF
:param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
:parm compile: whether to compile torch model
:param kwargs:
:return:
"""
print("Get %s model" % base_model, flush=True)
if lora_weights is not None and lora_weights.strip():
print("Get %s lora weights" % lora_weights, flush=True)
device = get_device()
if 'gpt2' in base_model.lower():
# RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half
load_8bit = False
assert base_model.strip(), (
"Please choose a base model with --base_model (CLI) or in Models Tab (gradio)"
)
llama_type = llama_type or "llama" in base_model
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type)
if not tokenizer_base_model:
tokenizer_base_model = base_model
if tokenizer_loader is not None and not isinstance(tokenizer_loader, str):
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
else:
tokenizer = tokenizer_loader
if isinstance(tokenizer, str):
# already a pipeline, tokenizer_loader is string for task
model = model_loader(tokenizer,
model=base_model,
device=0 if device == "cuda" else -1,
torch_dtype=torch.float16)
else:
assert device == "cuda", "Unsupported device %s" % device
model_kwargs = dict(local_files_only=local_files_only,
torch_dtype=torch.float16,
resume_download=resume_download,
use_auth_token=use_auth_token)
if 'mbart-' not in base_model.lower():
model_kwargs.update(dict(load_in_8bit=load_8bit,
device_map={"": 0} if load_8bit else "auto",
))
if 'OpenAssistant/reward-model'.lower() in base_model.lower():
# could put on other GPUs
model_kwargs['device_map'] = {"": 0}
model_kwargs.pop('torch_dtype', None)
if not lora_weights:
with torch.device("cuda"):
if infer_devices:
model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
gpu_id=gpu_id, use_auth_token=use_auth_token)
else:
if load_half and not load_8bit:
model = model_loader.from_pretrained(
base_model,
**model_kwargs).half()
else:
model = model_loader.from_pretrained(
base_model,
**model_kwargs)
elif load_8bit:
model = model_loader.from_pretrained(
base_model,
**model_kwargs
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
device_map={"": 0}, # seems to be required
)
else:
with torch.device("cuda"):
model = model_loader.from_pretrained(
base_model,
**model_kwargs
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
device_map="auto",
)
if load_half:
model.half()
# unwind broken decapoda-research config
if llama_type:
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if 'gpt2' in base_model.lower():
# add special tokens that otherwise all share the same id
tokenizer.add_special_tokens({'bos_token': '<bos>',
'eos_token': '<eos>',
'pad_token': '<pad>'})
if not isinstance(tokenizer, str):
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32" and compile:
model = torch.compile(model)
return model, tokenizer, device
def get_score_model(**kwargs):
# score model
if kwargs.get('score_model') is not None and kwargs.get('score_model').strip():
score_all_kwargs = kwargs.copy()
score_all_kwargs['load_8bit'] = False
score_all_kwargs['load_half'] = False
score_all_kwargs['base_model'] = kwargs.get('score_model').strip()
score_all_kwargs['tokenizer_base_model'] = ''
score_all_kwargs['lora_weights'] = ''
score_all_kwargs['llama_type'] = False
score_all_kwargs['compile'] = False
smodel, stokenizer, sdevice = get_model(**score_all_kwargs)
else:
smodel, stokenizer, sdevice = None, None, None
return smodel, stokenizer, sdevice
def go_gradio(**kwargs):
# get default model
all_kwargs = kwargs.copy()
all_kwargs.update(locals())
if kwargs.get('base_model') and not kwargs['login_mode_if_model0']:
model0, tokenizer0, device = get_model(**all_kwargs)
else:
# if empty model, then don't load anything, just get gradio up
model0, tokenizer0, device = None, None, None
model_state0 = [model0, tokenizer0, device, kwargs['base_model']]
# get score model
smodel, stokenizer, sdevice = get_score_model(**all_kwargs)
if 'mbart-' in kwargs['model_lower']:
instruction_label_nochat = "Text to translate"
else:
instruction_label_nochat = "Instruction"
instruction_label = "You (Shift-Enter or push Submit to send message)"
title = 'h2oGPT'
if kwargs['verbose']:
description = f"""Model {kwargs['base_model']} Instruct dataset.
For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
Command: {str(' '.join(sys.argv))}
Hash: {get_githash()}
"""
else:
description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).<br>"
if is_public:
description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)<br>"
description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.</i></li>"""
if kwargs['load_8bit']:
description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>"""
description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>"""
description += """<i><li>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).</i></li></ul></p>"""
if kwargs['verbose']:
task_info_md = f"""
### Task: {kwargs['task_info']}"""
else:
task_info_md = ''
css_code = """footer {visibility: hidden;}
body{background:linear-gradient(#f5f5f5,#e5e5e5);}
body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
from gradio.themes.utils import Color, colors, fonts, sizes
if kwargs['h2ocolors']:
h2o_yellow = Color(
name="yellow",
c50="#fffef2",
c100="#fff9e6",
c200="#ffecb3",
c300="#ffe28c",
c400="#ffd659",
c500="#fec925",
c600="#e6ac00",
c700="#bf8f00",
c800="#a67c00",
c900="#664d00",
c950="#403000",
)
h2o_gray = Color(
name="gray",
c50="#f2f2f2",
c100="#e5e5e5",
c200="#cccccc",
c300="#b2b2b2",
c400="#999999",
c500="#7f7f7f",
c600="#666666",
c700="#4c4c4c",
c800="#333333",
c900="#191919",
c950="#0d0d0d",
)
colors_dict = dict(primary_hue=h2o_yellow,
secondary_hue=h2o_yellow,
neutral_hue=h2o_gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_md,
)
else:
colors_dict = dict(primary_hue=colors.indigo,
secondary_hue=colors.indigo,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_md,
)
import gradio as gr
if kwargs['gradio_avoid_processing_markdown']:
from gradio_client import utils as client_utils
from gradio.components import Chatbot
# gradio has issue with taking too long to process input/output for markdown etc.
# Avoid for now, allow raw html to render, good enough for chatbot.
def _postprocess_chat_messages(self, chat_message: str):
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
filepath = chat_message[0]
mime_type = client_utils.get_mimetype(filepath)
filepath = self.make_temp_copy_if_needed(filepath)
return {
"name": filepath,
"mime_type": mime_type,
"alt_text": chat_message[1] if len(chat_message) > 1 else None,
"data": None, # These last two fields are filled in by the frontend
"is_file": True,
}
elif isinstance(chat_message, str):
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
Chatbot._postprocess_chat_messages = _postprocess_chat_messages
dark_js = """() => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
} else {
document.querySelector('body').classList.add('dark');
}
}"""
demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False)
callback = gr.CSVLogger()
# css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}'
# demo = gr.Blocks(theme='gstaff/xkcd', css=css_code)
model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
if kwargs['base_model'].strip() not in model_options:
lora_options = [kwargs['base_model'].strip()] + model_options
lora_options = kwargs['extra_lora_options']
if kwargs['lora_weights'].strip() not in lora_options:
lora_options = [kwargs['lora_weights'].strip()] + lora_options
# always add in no lora case
# add fake space so doesn't go away in gradio dropdown
no_lora_str = no_model_str = '[None/Remove]'
lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double?
# always add in no model case so can free memory
# add fake space so doesn't go away in gradio dropdown
model_options = [no_model_str] + model_options
# transcribe, will be detranscribed before use by evaluate()
if not kwargs['lora_weights'].strip():
kwargs['lora_weights'] = no_lora_str
if not kwargs['base_model'].strip():
kwargs['base_model'] = no_model_str
# transcribe for gradio
kwargs['gpu_id'] = str(kwargs['gpu_id'])
no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
'base_model') else no_model_msg
output_label0_model2 = no_model_msg
with demo:
# avoid actual model/tokenizer here or anything that would be bad to deepcopy
# https://github.com/gradio-app/gradio/issues/3558
model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']])
model_state2 = gr.State([None, None, None, None])
model_options_state = gr.State([model_options])
lora_options_state = gr.State([lora_options])
gr.Markdown(
f"""
<h1 align="center"> {title}</h1>
{description}
{task_info_md}
""")
if is_hf:
gr.HTML(
'''<center><a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate this Space to skip the queue and run in a private space</center>''')
# go button visible if
base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
normal_block = gr.Row(visible=not base_wanted)
with normal_block:
with gr.Tabs():
with gr.Row():
col_nochat = gr.Column(visible=not kwargs['chat'])
with col_nochat: # FIXME: for model comparison, and check rest
text_output_nochat = gr.Textbox(lines=5, label=output_label0)
instruction_nochat = gr.Textbox(
lines=4, label=instruction_label_nochat,
placeholder=kwargs['placeholder_instruction'],
)
iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
placeholder=kwargs['placeholder_input'])
submit_nochat = gr.Button("Submit")
flag_btn_nochat = gr.Button("Flag")
if not kwargs['auto_score']:
with gr.Column(visible=kwargs['score_model']):
score_btn_nochat = gr.Button("Score last prompt & response")
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
else:
with gr.Column(visible=kwargs['score_model']):
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
col_chat = gr.Column(visible=kwargs['chat'])
with col_chat:
with gr.Row():
text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400)
text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style(
height=kwargs['height'] or 400)
with gr.Row():
with gr.Column(scale=50):
instruction = gr.Textbox(
lines=4, label=instruction_label,
placeholder=kwargs['placeholder_instruction'],
)
with gr.Row():
submit = gr.Button(value='Submit').style(full_width=False, size='sm')
stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm')
with gr.Row():
clear = gr.Button("New Conversation")
flag_btn = gr.Button("Flag")
if not kwargs['auto_score']: # FIXME: For checkbox model2
with gr.Column(visible=kwargs['score_model']):
with gr.Row():
score_btn = gr.Button("Score last prompt & response").style(
full_width=False, size='sm')
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_res2 = gr.Row(visible=False)
with score_res2:
score_btn2 = gr.Button("Score last prompt & response 2").style(
full_width=False, size='sm')
score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
else:
with gr.Column(visible=kwargs['score_model']):
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
retry = gr.Button("Regenerate")
undo = gr.Button("Undo")
with gr.TabItem("Input/Output"):
with gr.Row():
if 'mbart-' in kwargs['model_lower']:
src_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['src_lang'],
label="Input Language")
tgt_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['tgt_lang'],
label="Output Language")
with gr.TabItem("Expert"):
with gr.Row():
with gr.Column():
stream_output = gr.components.Checkbox(label="Stream output",
value=kwargs['stream_output'])
prompt_type = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type",
visible=not is_public)
prompt_type2 = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type Model 2",
visible=not is_public and False)
do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k",
value=kwargs['do_sample'])
temperature = gr.Slider(minimum=0.01, maximum=3,
value=kwargs['temperature'],
label="Temperature",
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
top_p = gr.Slider(minimum=0, maximum=1,
value=kwargs['top_p'], label="Top p",
info="Cumulative probability of tokens to sample from")
top_k = gr.Slider(
minimum=0, maximum=100, step=1,
value=kwargs['top_k'], label="Top k",
info='Num. tokens to sample from'
)
max_beams = 8 if not is_low_mem else 2
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
value=min(max_beams, kwargs['num_beams']), label="Beams",
info="Number of searches for optimal overall probability. "
"Uses more GPU memory/compute")
max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens']
max_new_tokens = gr.Slider(
minimum=1, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
)
min_new_tokens = gr.Slider(
minimum=0, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
)
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
value=kwargs['early_stopping'])
max_max_time = 60 * 5 if not is_low_mem else 60
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
value=min(max_max_time, kwargs['max_time']), label="Max. time",
info="Max. time to search optimal output.")
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
value=kwargs['repetition_penalty'],
label="Repetition Penalty")
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
value=kwargs['num_return_sequences'],
label="Number Returns", info="Must be <= num_beams",
visible=not is_public)
iinput = gr.Textbox(lines=4, label="Input",
placeholder=kwargs['placeholder_input'],
visible=not is_public)
context = gr.Textbox(lines=3, label="System Pre-Context",
info="Directly pre-appended without prompt processing",
visible=not is_public and not kwargs['chat'])
chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
visible=not is_public)
with gr.TabItem("Models"):
load_msg = "Load-Unload Model/LORA" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
load_msg2 = "Load-Unload Model/LORA 2" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
compare_checkbox = gr.components.Checkbox(label="Compare Mode",
value=False, visible=not is_public)
with gr.Row():
n_gpus = torch.cuda.device_count()
n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
with gr.Column():
with gr.Row():
with gr.Column(scale=50):
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
value=kwargs['base_model'])
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
value=kwargs['lora_weights'], visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button = gr.Button(load_msg)
model_load8bit_checkbox = gr.components.Checkbox(
label="Load 8-bit [Not all models support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox = gr.components.Checkbox(
label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
value=kwargs['infer_devices'])
model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
value=kwargs['gpu_id'])
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'])
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
visible=kwargs['show_lora'])
with gr.Row():
with gr.Column(scale=50):
new_model = gr.Textbox(label="New Model HF name/path")
new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
with gr.Column(scale=1):
add_model_button = gr.Button("Add new model name")
add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora'])
col_model2 = gr.Column(visible=False)
with col_model2:
with gr.Row():
with gr.Column(scale=50):
model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
value=no_model_str)
lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
value=no_lora_str,
visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button2 = gr.Button(load_msg2)
model_load8bit_checkbox2 = gr.components.Checkbox(
label="Load 8-bit 2 [Not all models support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox2 = gr.components.Checkbox(
label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
value=kwargs[
'infer_devices'])
model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
value=kwargs['gpu_id'])
# no model/lora loaded ever in model2 by default
model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
visible=kwargs['show_lora'])
with gr.TabItem("System"):
admin_row = gr.Row()
with admin_row:
admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
admin_btn = gr.Button(value="Admin Access", visible=is_public)
system_row = gr.Row(visible=not is_public)
with system_row:
with gr.Column():
with gr.Row():
system_btn = gr.Button(value='Get System Info')
system_text = gr.Textbox(label='System Info')
with gr.Row():
zip_btn = gr.Button("Zip")
zip_text = gr.Textbox(label="Zip file name")
file_output = gr.File()
with gr.Row():
s3up_btn = gr.Button("S3UP")
s3up_text = gr.Textbox(label='S3UP result')
# Get flagged data
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text])
s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text)
def check_admin_pass(x):
return gr.update(visible=x == admin_pass)
def close_admin(x):
return gr.update(visible=not (x == admin_pass))
admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \
.then(close_admin, inputs=admin_pass_textbox, outputs=admin_row)
# Get inputs to evaluate()
inputs_list = get_inputs_list(locals(), kwargs['model_lower'])
from functools import partial
all_kwargs = kwargs.copy()
all_kwargs.update(locals())
kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
fun = partial(evaluate,
**kwargs_evaluate)
fun2 = partial(evaluate,
**kwargs_evaluate)
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
size="sm",
)
dark_mode_btn.click(
None,
None,
None,
_js=dark_js,
api_name="dark",
)
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
def col_nochat_fun(x):
return gr.Column.update(visible=not x)
def col_chat_fun(x):
return gr.Column.update(visible=x)
def context_fun(x):
return gr.Textbox.update(visible=not x)
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \
.then(col_chat_fun, chat, col_chat) \
.then(context_fun, chat, context)
# examples after submit or any other buttons for chat or no chat
if kwargs['examples'] is not None and kwargs['show_examples']:
gr.Examples(examples=kwargs['examples'], inputs=inputs_list)
# Score
def score_last_response(*args, nochat=False, model2=False):
""" Similar to user() """
args_list = list(args)
max_length_tokenize = 512 if is_low_mem else 2048
cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM
if not nochat:
history = args_list[-1]
if history is None:
if not model2:
# maybe only doing first model, no need to complain
print("Bad history in scoring last response, fix for now", flush=True)
history = []
if smodel is not None and \
stokenizer is not None and \
sdevice is not None and \
history is not None and len(history) > 0 and \
history[-1] is not None and \
len(history[-1]) >= 2:
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
question = history[-1][0]
answer = history[-1][1]
else:
return 'Response Score: NA'
else:
answer = args_list[-1]
instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
question = args_list[instruction_nochat_arg_id]
if question is None:
return 'Response Score: Bad Question'
if answer is None:
return 'Response Score: Bad Answer'
question = question[-cutoff_len:]
answer = answer[-cutoff_len:]
inputs = stokenizer(question, answer,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize).to(smodel.device)
try:
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
del inputs
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU OOM'
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU Error'
else:
raise
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
return 'Response Score: {:.1%}'.format(score)
def noop_score_last_response(*args, **kwargs):
return "Response Score: Disabled"
if kwargs['score_model']:
score_fun = score_last_response
else:
score_fun = noop_score_last_response
score_args = dict(fn=score_fun,
inputs=inputs_list + [text_output],
outputs=[score_text],
)
score_args2 = dict(fn=partial(score_fun, model2=True),
inputs=inputs_list + [text_output2],
outputs=[score_text2],
)
score_args_nochat = dict(fn=partial(score_fun, nochat=True),
inputs=inputs_list + [text_output_nochat],
outputs=[score_text_nochat],
)
if not kwargs['auto_score']:
score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \
.then(**score_args2, queue=stream_output, api_name='score2')
score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output,
api_name='score_nochat')
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
"""
User that fills history for bot
:param args:
:param undo:
:param sanitize_user_prompt:
:param model2:
:return:
"""
args_list = list(args)
user_message = args_list[0]
input1 = args_list[1]
context1 = args_list[2]
if input1 and not user_message.endswith(':'):
user_message1 = user_message + ":" + input1
elif input1:
user_message1 = user_message + input1
else:
user_message1 = user_message
if sanitize_user_prompt:
from better_profanity import profanity
user_message1 = profanity.censor(user_message1)
history = args_list[-1]
if undo and history:
history.pop()
args_list = args_list[:-1] # FYI, even if unused currently
if history is None:
if not model2:
# no need to complain so often unless model1
print("Bad history, fix for now", flush=True)
history = []
# ensure elements not mixed across models as output,
# even if input is currently same source
history = history.copy()
if undo:
return history
else:
# FIXME: compare, same history for now
return history + [[user_message1, None]]
def bot(*args, retry=False):
"""
bot that consumes history for user input
instruction (from input_list) itself is not consumed by bot
:param args:
:param retry:
:return:
"""
args_list = list(args).copy()
history = args_list[-1] # model_state is -2
if retry and history:
history.pop()
if not history:
print("No history", flush=True)
return
# ensure output will be unique to models
history = history.copy()
instruction1 = history[-1][0]
context1 = ''
if kwargs['chat_history'] > 0:
prompt_type_arg_id = eval_func_param_names.index('prompt_type')
prompt_type1 = args_list[prompt_type_arg_id]
chat_arg_id = eval_func_param_names.index('chat')
chat1 = args_list[chat_arg_id]
context1 = ''
for histi in range(len(history) - 1):
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace(
'<br>', '\n')
if not context1.endswith('\n'):
context1 += '\n'
if context1 and not context1.endswith('\n'):
context1 += '\n' # ensure if terminates abruptly, then human continues on next line
args_list[0] = instruction1 # override original instruction with history from user
# only include desired chat history
args_list[2] = context1[-kwargs['chat_history']:]
model_state1 = args_list[-2]
if model_state1[0] is None or model_state1[0] == no_model_str:
return
args_list = args_list[:-2]
fun1 = partial(evaluate,
model_state1,
**kwargs_evaluate)
try:
for output in fun1(*tuple(args_list)):
bot_message = output
history[-1][1] = bot_message
yield history
except StopIteration:
yield history
except RuntimeError as e:
if "generator raised StopIteration" in str(e):
# assume last entry was bad, undo
history.pop()
yield history
raise
except Exception as e:
# put error into user input
history[-1][0] = "Exception: %s" % str(e)
yield history
raise
return
# NORMAL MODEL
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
inputs=inputs_list + [text_output],
outputs=text_output,
)
bot_args = dict(fn=bot,
inputs=inputs_list + [model_state] + [text_output],
outputs=text_output,
)
retry_bot_args = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state] + [text_output],
outputs=text_output,
)
undo_user_args = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output],
outputs=text_output,
)
# MODEL2
user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
inputs=inputs_list + [text_output2],
outputs=text_output2,
)
bot_args2 = dict(fn=bot,
inputs=inputs_list + [model_state2] + [text_output2],
outputs=text_output2,
)
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state2] + [text_output2],
outputs=text_output2,
)
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output2],
outputs=text_output2,
)
def clear_instruct():
return gr.Textbox.update(value='')
if kwargs['auto_score']:
# in case 2nd model, consume instruction first, so can clear quickly
# bot doesn't consume instruction itself, just history from user, so why works
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
.then(**user_args2, queue=stream_output, api_name='instruction2') \
.then(clear_instruct, None, instruction) \
.then(**bot_args, api_name='instruction_bot') \
.then(**score_args, api_name='instruction_bot_score') \
.then(**bot_args2, api_name='instruction_bot2') \
.then(**score_args2, api_name='instruction_bot_score2') \
.then(clear_torch_cache)
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
.then(**user_args2, queue=stream_output, api_name='submit2') \
.then(**bot_args, api_name='submit_bot') \
.then(clear_instruct, None, instruction) \
.then(**score_args, api_name='submit_bot_score') \
.then(**bot_args2, api_name='submit_bot2') \
.then(**score_args2, api_name='submit_bot_score2') \
.then(clear_torch_cache)
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
.then(**user_args2, queue=stream_output, api_name='retry2') \
.then(clear_instruct, None, instruction) \
.then(**retry_bot_args, api_name='retry_bot') \
.then(**score_args, api_name='retry_bot_score') \
.then(**retry_bot_args2, api_name='retry_bot2') \
.then(**score_args2, api_name='retry_bot_score2') \
.then(clear_torch_cache)
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
.then(**score_args, api_name='undo_score') \
.then(**undo_user_args2, queue=stream_output, api_name='undo2') \
.then(**score_args2, api_name='undo_score2') \
.then(clear_instruct, None, instruction)
else:
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
.then(**user_args2, queue=stream_output, api_name='instruction2') \
.then(clear_instruct, None, instruction) \
.then(**bot_args, api_name='instruction_bot') \
.then(**bot_args2, api_name='instruction_bot2') \
.then(clear_torch_cache)
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
.then(**user_args2, queue=stream_output, api_name='submit2') \
.then(clear_instruct, None, instruction) \
.then(**bot_args, api_name='submit_bot') \
.then(**bot_args2, api_name='submit_bot2') \
.then(clear_torch_cache)
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
.then(**user_args2, queue=stream_output, api_name='retry2') \
.then(clear_instruct, None, instruction) \
.then(**retry_bot_args, api_name='retry_bot') \
.then(**retry_bot_args2, api_name='retry_bot2') \
.then(clear_torch_cache)
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
.then(**undo_user_args2, queue=stream_output, api_name='undo2')
# does both models
clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \
.then(lambda: None, None, text_output2, queue=False, api_name='clear2')
# FIXME: compare
submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
outputs=text_output_nochat, api_name='submit_nochat') \
.then(**score_args_nochat, api_name='instruction_bot_score_nochat') \
.then(clear_torch_cache)
def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
# ensure old model removed from GPU memory
if kwargs['debug']:
print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
if isinstance(model_state_old[0], str) and model0 is not None:
# best can do, move model loaded at first to CPU
model0.cpu()
if model_state_old[0] is not None and not isinstance(model_state_old[0], str):
try:
model_state_old[0].cpu()
except Exception as e:
# sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
print("Unable to put model on CPU: %s" % str(e), flush=True)
del model_state_old[0]
model_state_old[0] = None
if model_state_old[1] is not None and not isinstance(model_state_old[1], str):
del model_state_old[1]
model_state_old[1] = None
clear_torch_cache()
if kwargs['debug']:
print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
if model_name is None or model_name == no_model_str:
# no-op if no model, just free memory
# no detranscribe needed for model, never go into evaluate
lora_weights = no_lora_str
return [None, None, None, model_name], model_name, lora_weights, prompt_type_old
all_kwargs1 = all_kwargs.copy()
all_kwargs1['base_model'] = model_name.strip()
all_kwargs1['load_8bit'] = load_8bit
all_kwargs1['infer_devices'] = infer_devices
all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe
model_lower = model_name.strip().lower()
if model_lower in inv_prompt_type_to_model_lower:
prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
else:
prompt_type1 = prompt_type_old
# detranscribe
if lora_weights == no_lora_str:
lora_weights = ''
all_kwargs1['lora_weights'] = lora_weights.strip()
model1, tokenizer1, device1 = get_model(**all_kwargs1)
clear_torch_cache()
if kwargs['debug']:
print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1
def dropdown_prompt_type_list(x):
return gr.Dropdown.update(value=x)
def chatbot_list(x, model_used_in):
return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')
load_model_args = dict(fn=load_model,
inputs=[model_choice, lora_choice, model_state, prompt_type,
model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
outputs=[model_state, model_used, lora_used, prompt_type])
prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
nochat_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output_nochat)
if not is_public:
load_model_event = load_model_button.click(**load_model_args) \
.then(**prompt_update_args) \
.then(**chatbot_update_args) \
.then(**nochat_update_args) \
.then(clear_torch_cache)
load_model_args2 = dict(fn=load_model,
inputs=[model_choice2, lora_choice2, model_state2, prompt_type2,
model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
outputs=[model_state2, model_used2, lora_used2, prompt_type2])
prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
if not is_public:
load_model_event2 = load_model_button2.click(**load_model_args2) \
.then(**prompt_update_args2) \
.then(**chatbot_update_args2) \
.then(clear_torch_cache)
def dropdown_model_list(list0, x):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
return gr.Dropdown.update(value=x, choices=new_options), \
gr.Dropdown.update(value=x, choices=new_options), \
'', new_state
add_model_event = add_model_button.click(fn=dropdown_model_list,
inputs=[model_options_state, new_model],
outputs=[model_choice, model_choice2, new_model, model_options_state])
def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
# don't switch drop-down to added lora if already have model loaded
x1 = x if model_used1 == no_model_str else lora_used1
x2 = x if model_used2 == no_model_str else lora_used2
return gr.Dropdown.update(value=x1, choices=new_options), \
gr.Dropdown.update(value=x2, choices=new_options), \
'', new_state
add_lora_event = add_lora_button.click(fn=dropdown_lora_list,
inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2],
outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \
.then(lambda: gr.update(visible=True), None, normal_block) \
.then(**load_model_args).then(**prompt_update_args)
def compare_textbox_fun(x):
return gr.Textbox.update(visible=x)
def compare_column_fun(x):
return gr.Column.update(visible=x)
def compare_prompt_fun(x):
return gr.Dropdown.update(visible=x)
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox") \
.then(compare_column_fun, compare_checkbox, col_model2) \
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \
.then(compare_textbox_fun, compare_checkbox, score_text2)
# FIXME: add score_res2 in condition, but do better
# callback for logging flagged input/output
callback.setup(inputs_list + [text_output], "flagged_data_points")
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
api_name='flag')
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
api_name='flag_nochat')
def get_system_info():
return gr.Textbox.update(value=system_info_print())
system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info')
# don't pass text_output, don't want to clear output, just stop it
# FIXME: have to click once to stop output and second time to stop GPUs going
stop_btn.click(lambda: None, None, None,
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
queue=False, api_name='stop').then(clear_torch_cache)
demo.load(None,None,None, _js=dark_js)
demo.queue(concurrency_count=1)
favicon_path = "h2o-logo.svg"
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
print("Started GUI", flush=True)
if kwargs['block_gradio_exit']:
demo.block_thread()
input_args_list = ['model_state']
inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0']
def get_inputs_list(inputs_dict, model_lower):
"""
map gradio objects in locals() to inputs for evaluate().
:param inputs_dict:
:param model_lower:
:return:
"""
inputs_list_names = list(inspect.signature(evaluate).parameters)
inputs_list = []
for k in inputs_list_names:
if k == 'kwargs':
continue
if k in input_args_list + inputs_kwargs_list:
# these are added via partial, not taken as input
continue
if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
continue
inputs_list.append(inputs_dict[k])
return inputs_list
eval_func_param_names = ['instruction',
'iinput',
'context',
'stream_output',
'prompt_type',
'temperature',
'top_p',
'top_k',
'num_beams',
'max_new_tokens',
'min_new_tokens',
'early_stopping',
'max_time',
'repetition_penalty',
'num_return_sequences',
'do_sample',
'chat',
'instruction_nochat',
'iinput_nochat',
]
def evaluate(
model_state,
# START NOTE: Examples must have same order of parameters
instruction,
iinput,
context,
stream_output,
prompt_type,
temperature,
top_p,
top_k,
num_beams,
max_new_tokens,
min_new_tokens,
early_stopping,
max_time,
repetition_penalty,
num_return_sequences,
do_sample,
chat,
instruction_nochat,
iinput_nochat,
# END NOTE: Examples must have same order of parameters
src_lang=None,
tgt_lang=None,
debug=False,
save_dir=None,
hard_stop_list=None,
sanitize_bot_response=True,
model_state0=None,
**kwargs,
):
if debug:
locals_dict = locals().copy()
locals_dict.pop('model_state', None)
locals_dict.pop('model_state0', None)
print(locals_dict)
no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation"
if model_state0 is None:
# e.g. for no gradio case, set dummy value, else should be set
model_state0 = [None, None, None, None]
if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str):
# try to free-up original model (i.e. list was passed as reference)
if model_state0 is not None and model_state0[0] is not None:
model_state0[0].cpu()
model_state0[0] = None
# try to free-up original tokenizer (i.e. list was passed as reference)
if model_state0 is not None and model_state0[1] is not None:
model_state0[1] = None
clear_torch_cache()
model, tokenizer, device, base_model = model_state
elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None:
assert isinstance(model_state[0], str)
model, tokenizer, device, base_model = model_state0
else:
raise AssertionError(no_model_msg)
if base_model is None:
raise AssertionError(no_model_msg)
assert base_model.strip(), no_model_msg
assert model, "Model is missing"
assert tokenizer, "Tokenizer is missing"
# choose chat or non-chat mode
if not chat:
instruction = instruction_nochat
iinput = iinput_nochat
data_point = dict(context=context, instruction=instruction, input=iinput)
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
if hard_stop_list is None:
# acts like undo on user entry and bot response
hard_stop_list = []
if isinstance(tokenizer, str):
# pipeline
if tokenizer == "summarization":
key = 'summary_text'
else:
raise RuntimeError("No such task type %s" % tokenizer)
# NOTE: uses max_length only
yield model(prompt, max_length=max_new_tokens)[0][key]
if 'mbart-' in base_model.lower():
assert src_lang is not None
tokenizer.src_lang = languages_covered()[src_lang]
if chat:
# override, ignore user change
num_return_sequences = 1
if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']:
if prompt_type == 'human_bot':
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
# stopping only starts once output is beyond prompt
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
stop_words = [human, bot, '\n' + human, '\n' + bot]
encounters = [1, 2]
elif prompt_type == 'instruct_vicuna':
# even below is not enough, generic strings and many ways to encode
stop_words = [
'### Human:',
"""
### Human:""",
"""
### Human:
""",
'### Assistant:',
"""
### Assistant:""",
"""
### Assistant:
""",
]
encounters = [1, 2]
else:
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
stop_words = ['### End']
encounters = [1]
stop_words_ids = [
tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
# handle single token case
stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
# avoid padding in front of tokens
if tokenizer.pad_token:
stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
# handle fake \n added
stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)]
# build stopper
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)])
else:
stopping_criteria = StoppingCriteriaList()
# help to avoid errors like:
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3
# RuntimeError: expected scalar type Half but found Float
# with - 256
max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256
cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens
output_smallest = 30 * 4
prompt = prompt[-cutoff_len - output_smallest:]
inputs = tokenizer(prompt,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize)
if debug and len(inputs["input_ids"]) > 0:
print('input_ids length', len(inputs["input_ids"][0]), flush=True)
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=float(temperature),
top_p=float(top_p),
top_k=top_k,
num_beams=num_beams,
do_sample=do_sample,
repetition_penalty=float(repetition_penalty),
num_return_sequences=num_return_sequences,
renormalize_logits=True,
remove_invalid_values=True,
**kwargs,
)
gen_kwargs = dict(input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens, # prompt + new
min_new_tokens=min_new_tokens, # prompt + new
early_stopping=early_stopping, # False, True, "never"
max_time=max_time,
stopping_criteria=stopping_criteria,
)
if 'gpt2' in base_model.lower():
gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id))
elif 'mbart-' in base_model.lower():
assert tgt_lang is not None
tgt_lang = languages_covered()[tgt_lang]
gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang]))
else:
gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id))
decoder = functools.partial(tokenizer.decode,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
decoder_raw = functools.partial(tokenizer.decode,
skip_special_tokens=False,
clean_up_tokenization_spaces=True,
)
with torch.no_grad():
# decoded tokenized prompt can deviate from prompt due to special characters
inputs_decoded = decoder(input_ids[0])
inputs_decoded_raw = decoder_raw(input_ids[0])
if inputs_decoded == prompt:
# normal
pass
elif inputs_decoded.lstrip() == prompt.lstrip():
# sometimes extra space in front, make prompt same for prompt removal
prompt = inputs_decoded
elif inputs_decoded_raw == prompt:
# some models specify special tokens that are part of normal prompt, so can't skip them
inputs_decoded_raw = inputs_decoded
decoder = decoder_raw
else:
print("WARNING: Special characters in prompt", flush=True)
if stream_output:
def generate(callback=None, **kwargs):
# re-order stopping so Stream first and get out all chunks before stop for other reasons
stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy()
kwargs['stopping_criteria'] = StoppingCriteriaList()
kwargs['stopping_criteria'].append(Stream(func=callback))
for stopping_criteria1 in stopping_criteria0:
kwargs['stopping_criteria'].append(stopping_criteria1)
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
if kwargs['input_ids'] is not None:
kwargs['input_ids'].cpu()
kwargs['input_ids'] = None
traceback.print_exc()
clear_torch_cache()
return
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print(
"GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
if raise_generate_gpu_exceptions:
raise
return
else:
raise
decoded_output = None
for output in CallbackToGenerator(generate, callback=None, **gen_kwargs):
decoded_output = decoder(output)
if output[-1] in [tokenizer.eos_token_id]:
if debug:
print("HIT EOS", flush=True)
break
if any(ele in decoded_output for ele in hard_stop_list):
raise StopIteration
yield prompter.get_response(decoded_output, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response)
if save_dir and decoded_output:
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
else:
outputs = model.generate(**gen_kwargs)
outputs = [decoder(s) for s in outputs.sequences]
yield prompter.get_response(outputs, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response)
if save_dir and outputs and len(outputs) >= 1:
decoded_output = prompt + outputs[0]
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
def get_generate_params(model_lower, chat,
stream_output, show_examples,
prompt_type, temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample):
use_defaults = False
use_default_examples = True
examples = []
task_info = f"{prompt_type}"
if model_lower:
print(f"Using Model {model_lower}", flush=True)
else:
print("No model defined yet", flush=True)
min_new_tokens = min_new_tokens if min_new_tokens is not None else 0
early_stopping = early_stopping if early_stopping is not None else False
max_time_defaults = 60 * 3
max_time = max_time if max_time is not None else max_time_defaults
if not prompt_type and model_lower in inv_prompt_type_to_model_lower:
prompt_type = inv_prompt_type_to_model_lower[model_lower]
# examples at first don't include chat, instruction_nochat, iinput_nochat, added at end
if show_examples is None:
if chat:
show_examples = False
else:
show_examples = True
summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"""
if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower:
placeholder_instruction = summarize_example1
placeholder_input = ""
use_defaults = True
use_default_examples = False
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
task_info = "Summarization"
elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower:
placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
placeholder_input = ""
use_defaults = True
use_default_examples = True
task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)"
elif 'mbart-' in model_lower:
placeholder_instruction = "The girl has long hair."
placeholder_input = ""
use_defaults = True
use_default_examples = False
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
elif 'gpt2' in model_lower:
placeholder_instruction = "The sky is"
placeholder_input = ""
prompt_type = prompt_type or 'plain'
use_default_examples = True # some will be odd "continuations" but can be ok
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
task_info = "Auto-complete phrase, code, etc."
use_defaults = True
else:
if chat:
placeholder_instruction = "Enter a question or imperative."
else:
placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter."
placeholder_input = ""
if model_lower:
prompt_type = prompt_type or 'human_bot'
else:
prompt_type = ''
examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "",
stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1,
False]]
task_info = "No task"
if prompt_type == 'instruct':
task_info = "Answer question or follow imperative as instruction with optionally input."
elif prompt_type == 'plain':
task_info = "Auto-complete phrase, code, etc."
elif prompt_type == 'human_bot':
if chat:
task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)"
else:
task_info = "Ask question/imperative (input concatenated with instruction)"
# revert to plain if still nothing
prompt_type = prompt_type or 'plain'
if use_defaults:
temperature = 1.0 if temperature is None else temperature
top_p = 1.0 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
num_beams = num_beams or 1
max_new_tokens = max_new_tokens or 128
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
else:
temperature = 0.1 if temperature is None else temperature
top_p = 0.75 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
if chat:
num_beams = num_beams or 1
else:
num_beams = num_beams or 4
max_new_tokens = max_new_tokens or 256
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
# doesn't include chat, instruction_nochat, iinput_nochat, added later
params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens,
early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
if use_default_examples:
examples += [
["Translate English to French", "Good morning"] + params_list,
["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list,
["Explain in detailed list, all the best practices for coding in python.", ''] + params_list,
[
"Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.",
''] + params_list,
['Translate to German: My name is Arthur', ''] + params_list,
["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list,
['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.',
''] + params_list,
['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list,
['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list,
["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list,
[
"Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?",
''] + params_list,
['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list,
[
'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?',
''] + params_list,
["""def area_of_rectangle(a: float, b: float):
\"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list,
["""# a function in native python:
def mean(a):
return sum(a)/len(a)
# the same function using numpy:
import numpy as np
def mean(a):""", ''] + params_list,
["""X = np.random.randn(100, 100)
y = np.random.randint(0, 1, 100)
# fit random forest classifier with 20 estimators""", ''] + params_list,
]
src_lang = "English"
tgt_lang = "Russian"
# move to correct position
for example in examples:
example += [chat, '', '']
# adjust examples if non-chat mode
if not chat:
example[eval_func_param_names.index('instruction_nochat')] = example[
eval_func_param_names.index('instruction')]
example[eval_func_param_names.index('instruction')] = ''
example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')]
example[eval_func_param_names.index('iinput')] = ''
return placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info
def languages_covered():
# https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered
covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)"""
covered = covered.split(', ')
covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered}
return covered
def test_test_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
return generate_prompt(example_data_point, prompt_type, False, False)
if __name__ == "__main__":
print("""
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
# generate without lora weights, no prompt
python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq'
# OpenChatKit settings:
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0
python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False
python generate.py --base_model='t5-large' --prompt_type='simple_instruct'
python generate.py --base_model='philschmid/bart-large-cnn-samsum'
python generate.py --base_model='philschmid/flan-t5-base-samsum'
python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28'
must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False
can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot'
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
""", flush=True)
fire.Fire(main)