import gradio as gr from transformers import pipeline model_pipeline = pipeline("text2text-generation", model="tribler/dsi-search-on-toy-dataset") def process_query(query): results = model_pipeline(query, max_length=60) result_text = results[0]['generated_text'].strip() if result_text.startswith("http"): youtube_id = result_text.split('watch?v=')[-1] iframe = f'' return gr.HTML(iframe) elif result_text.startswith("magnet"): return gr.HTML(f'{result_text}') else: bitcoin_logo_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Bitcoin.svg/800px-Bitcoin.svg.png" return gr.Textbox(f'
Bitcoin Logo{result_text}
') interface = gr.Interface(fn=process_query, inputs=gr.Textbox(label="Query"), outputs="html", title="Search Interface", description="Search for movie trailers, music torrents, and bitcoin wallet addresses.", article="This interface searches a toy dataset and returns a YouTube URL, magnet link, or Bitcoin wallet address.", examples=[["spider man"], ["oceans 13"], ["sister starlight"], ["bitcoin address of xileno"]]) if __name__ == "__main__": interface.launch()