|
import os |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPConfig, CLIPImageProcessor |
|
|
|
import ldm_patched.modules.model_management as model_management |
|
import modules.config |
|
from extras.safety_checker.models.safety_checker import StableDiffusionSafetyChecker |
|
from ldm_patched.modules.model_patcher import ModelPatcher |
|
|
|
safety_checker_repo_root = os.path.join(os.path.dirname(__file__), 'safety_checker') |
|
config_path = os.path.join(safety_checker_repo_root, "configs", "config.json") |
|
preprocessor_config_path = os.path.join(safety_checker_repo_root, "configs", "preprocessor_config.json") |
|
|
|
|
|
class Censor: |
|
def __init__(self): |
|
self.safety_checker_model: ModelPatcher | None = None |
|
self.clip_image_processor: CLIPImageProcessor | None = None |
|
self.load_device = torch.device('cpu') |
|
self.offload_device = torch.device('cpu') |
|
|
|
def init(self): |
|
if self.safety_checker_model is None and self.clip_image_processor is None: |
|
safety_checker_model = modules.config.downloading_safety_checker_model() |
|
self.clip_image_processor = CLIPImageProcessor.from_json_file(preprocessor_config_path) |
|
clip_config = CLIPConfig.from_json_file(config_path) |
|
model = StableDiffusionSafetyChecker.from_pretrained(safety_checker_model, config=clip_config) |
|
model.eval() |
|
|
|
self.load_device = model_management.text_encoder_device() |
|
self.offload_device = model_management.text_encoder_offload_device() |
|
|
|
model.to(self.offload_device) |
|
|
|
self.safety_checker_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) |
|
|
|
def censor(self, images: list | np.ndarray) -> list | np.ndarray: |
|
self.init() |
|
model_management.load_model_gpu(self.safety_checker_model) |
|
|
|
single = False |
|
if not isinstance(images, (list, np.ndarray)): |
|
images = [images] |
|
single = True |
|
|
|
safety_checker_input = self.clip_image_processor(images, return_tensors="pt") |
|
safety_checker_input.to(device=self.load_device) |
|
checked_images, has_nsfw_concept = self.safety_checker_model.model(images=images, |
|
clip_input=safety_checker_input.pixel_values) |
|
checked_images = [image.astype(np.uint8) for image in checked_images] |
|
|
|
if single: |
|
checked_images = checked_images[0] |
|
|
|
return checked_images |
|
|
|
|
|
default_censor = Censor().censor |
|
|