|
import sys |
|
|
|
import modules.config |
|
import numpy as np |
|
import torch |
|
from extras.GroundingDINO.util.inference import default_groundingdino |
|
from extras.sam.predictor import SamPredictor |
|
from rembg import remove, new_session |
|
from segment_anything import sam_model_registry |
|
from segment_anything.utils.amg import remove_small_regions |
|
|
|
|
|
class SAMOptions: |
|
def __init__(self, |
|
|
|
dino_prompt: str = '', |
|
dino_box_threshold=0.3, |
|
dino_text_threshold=0.25, |
|
dino_erode_or_dilate=0, |
|
dino_debug=False, |
|
|
|
|
|
max_detections=2, |
|
model_type='vit_b' |
|
): |
|
self.dino_prompt = dino_prompt |
|
self.dino_box_threshold = dino_box_threshold |
|
self.dino_text_threshold = dino_text_threshold |
|
self.dino_erode_or_dilate = dino_erode_or_dilate |
|
self.dino_debug = dino_debug |
|
self.max_detections = max_detections |
|
self.model_type = model_type |
|
|
|
|
|
def optimize_masks(masks: torch.Tensor) -> torch.Tensor: |
|
""" |
|
removes small disconnected regions and holes |
|
""" |
|
fine_masks = [] |
|
for mask in masks.to('cpu').numpy(): |
|
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0]) |
|
masks = np.stack(fine_masks, axis=0)[:, np.newaxis] |
|
return torch.from_numpy(masks) |
|
|
|
|
|
def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras=None, |
|
sam_options: SAMOptions | None = SAMOptions) -> tuple[np.ndarray | None, int | None, int | None, int | None]: |
|
dino_detection_count = 0 |
|
sam_detection_count = 0 |
|
sam_detection_on_mask_count = 0 |
|
|
|
if image is None: |
|
return None, dino_detection_count, sam_detection_count, sam_detection_on_mask_count |
|
|
|
if extras is None: |
|
extras = {} |
|
|
|
if 'image' in image: |
|
image = image['image'] |
|
|
|
if mask_model != 'sam' or sam_options is None: |
|
result = remove( |
|
image, |
|
session=new_session(mask_model, **extras), |
|
only_mask=True, |
|
**extras |
|
) |
|
|
|
return result, dino_detection_count, sam_detection_count, sam_detection_on_mask_count |
|
|
|
detections, boxes, logits, phrases = default_groundingdino( |
|
image=image, |
|
caption=sam_options.dino_prompt, |
|
box_threshold=sam_options.dino_box_threshold, |
|
text_threshold=sam_options.dino_text_threshold |
|
) |
|
|
|
H, W = image.shape[0], image.shape[1] |
|
boxes = boxes * torch.Tensor([W, H, W, H]) |
|
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2 |
|
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2] |
|
|
|
sam_checkpoint = modules.config.download_sam_model(sam_options.model_type) |
|
sam = sam_model_registry[sam_options.model_type](checkpoint=sam_checkpoint) |
|
|
|
sam_predictor = SamPredictor(sam) |
|
final_mask_tensor = torch.zeros((image.shape[0], image.shape[1])) |
|
dino_detection_count = boxes.size(0) |
|
|
|
if dino_detection_count > 0: |
|
sam_predictor.set_image(image) |
|
|
|
if sam_options.dino_erode_or_dilate != 0: |
|
for index in range(boxes.size(0)): |
|
assert boxes.size(1) == 4 |
|
boxes[index][0] -= sam_options.dino_erode_or_dilate |
|
boxes[index][1] -= sam_options.dino_erode_or_dilate |
|
boxes[index][2] += sam_options.dino_erode_or_dilate |
|
boxes[index][3] += sam_options.dino_erode_or_dilate |
|
|
|
if sam_options.dino_debug: |
|
from PIL import ImageDraw, Image |
|
debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black") |
|
draw = ImageDraw.Draw(debug_dino_image) |
|
for box in boxes.numpy(): |
|
draw.rectangle(box.tolist(), fill="white") |
|
return np.array(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count |
|
|
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2]) |
|
masks, _, _ = sam_predictor.predict_torch( |
|
point_coords=None, |
|
point_labels=None, |
|
boxes=transformed_boxes, |
|
multimask_output=False, |
|
) |
|
|
|
masks = optimize_masks(masks) |
|
sam_detection_count = len(masks) |
|
if sam_options.max_detections == 0: |
|
sam_options.max_detections = sys.maxsize |
|
sam_objects = min(len(logits), sam_options.max_detections) |
|
for obj_ind in range(sam_objects): |
|
mask_tensor = masks[obj_ind][0] |
|
final_mask_tensor += mask_tensor |
|
sam_detection_on_mask_count += 1 |
|
|
|
final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy() |
|
mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255 |
|
mask_image = np.array(mask_image, dtype=np.uint8) |
|
return mask_image, dino_detection_count, sam_detection_count, sam_detection_on_mask_count |
|
|