File size: 4,142 Bytes
b2d6a88
e4cecdd
 
9b453b2
b2d6a88
1e7a67e
b2d6a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce94af
b2d6a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf1632
 
 
 
 
b2d6a88
 
 
 
1e7a67e
b2d6a88
1e7a67e
b2d6a88
e4cecdd
 
b2d6a88
 
e4cecdd
b2d6a88
fbf1632
1e7a67e
b2d6a88
1e7a67e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
#os.system("pip uninstall -y gradio")
#os.system("pip install gradio==4.19.0")
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')

import gradio as gr
import numpy as np
from transformers import AutoModelForTokenClassification
from datasets.features import ClassLabel
from transformers import AutoProcessor
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
import torch
from datasets import load_metric
from transformers import LayoutLMv3ForTokenClassification
from transformers.data.data_collator import default_data_collator


from transformers import AutoModelForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont


processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
model = AutoModelForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv3-finetuned-invoice")



# load image example
dataset = load_dataset("darentang/generated", split="test")
Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")

# define id2label, label2color
labels = dataset.features['ner_tags'].feature.names
id2label = {v: k for v, k in enumerate(labels)}
label2color = {
    "B-ABN": 'blue',
    "B-BILLER": 'blue',
    "B-BILLER_ADDRESS": 'green',
    "B-BILLER_POST_CODE": 'orange',
    "B-DUE_DATE": "blue",
    "B-GST": 'green',
    "B-INVOICE_DATE": 'violet',
    "B-INVOICE_NUMBER": 'orange',
    "B-SUBTOTAL": 'green',
    "B-TOTAL": 'blue',
    "I-BILLER_ADDRESS": 'blue',
    "O": 'orange'
  } 

def unnormalize_box(bbox, width, height):
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]


def iob_to_label(label):
    return label



def process_image(image):

    print(type(image))
    width, height = image.size

    # encode
    encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
    offset_mapping = encoding.pop('offset_mapping')

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]

    # draw predictions over the image
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()
    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction)
        draw.rectangle(box, outline=label2color[predicted_label])
        draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
    
    return image


def process_image_2(image):
    pass



title = "Document Layout Detection"
description = "Using Layout_LM_v3 model for invoice information extraction"

article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2]  <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>" 

css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=process_image, 
                     inputs=gr.Image(type="pil"), 
                     outputs=gr.Image(type="pil", label="annotated image"),
                     title=title,
                     description=description,
#                     article=article,
#                     examples=examples,
                     css=css)

iface.launch(inline=False, share=False, debug=False)