File size: 9,931 Bytes
71026d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import numpy as np
from abc import ABC, abstractmethod
from torch import nn
from hydra.utils import instantiate
import copy
from peft import LoraConfig, get_peft_model
from utils.model_utils import print_trainable_parameters


def freeze(model):
    """Freezes the parameters of a model."""
    for p in model.parameters():
        p.requires_grad = False
    model.eval()


def unfreeze(model):
    """Unfreezes the parameters of a model.

    for p in model.parameters():

        p.requires_grad = True"""
    model_parameters = model.named_parameters()
    for name, param in model_parameters:
        if name in [
            "clip.vision_model.post_layernorm.weight",
            "clip.vision_model.post_layernorm.bias",
        ]:
            param.requires_grad = False
        else:
            param.requires_grad = True
    model.train()


def unfreeze_last(model):
    """Unfreezes the parameters of a model.

    for p in model.parameters():

        p.requires_grad = True"""
    model_parameters = model.named_parameters()
    for name, param in model_parameters:
        if len(name.split(".")) > 5:
            if name.split(".")[4] == "11":
                param.requires_grad = True
            else:
                param.requires_grad = False
        else:
            param.requires_grad = False
    model.train()


class FrozenBackbone(nn.Module):
    """Freezes the backbone of a network."""

    def __init__(self, backbone, mid, head):
        super().__init__()
        self.backbone = backbone.instance
        self.mid = mid.instance
        self.head = head.instance
        self.target_key = head.target_key
        freeze(self.backbone)

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """
        with torch.no_grad():
            x = self.backbone(x)
        x = self.mid(x)
        x = self.head(x)
        return x


class UnfrozenBackbone(nn.Module):
    """Unfreezes the backbone of a network."""

    def __init__(self, backbone, mid, head):
        super().__init__()
        self.backbone = backbone.instance
        self.mid = mid.instance
        self.head = head.instance
        self.target_key = head.target_key
        unfreeze(self.backbone)

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """
        x = self.backbone(x)
        x = self.mid(x)
        x = self.head(x)
        return x


class UnfrozenPartBackbone(nn.Module):
    """Unfreezes the backbone of a network."""

    def __init__(self, backbone, mid, head):
        super().__init__()
        self.backbone = backbone.instance
        self.mid = mid.instance
        self.head = head.instance
        self.target_key = head.target_key
        unfreeze_last(self.backbone)

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """
        x = self.backbone(x)
        x = self.mid(x)
        x = self.head(x)
        return x


class NoFeatureBackbone(nn.Module):
    """Randomizes the backbone of a network."""

    def __init__(self, head):
        super().__init__()
        self.head = head.instance
        self.target_key = head.target_key

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """
        return self.head(x)


class ContrastiveFrozenBackbone(FrozenBackbone):
    """Freezes the backbone of a network."""

    def __init__(self, backbone, mid, head, mode):
        super().__init__(backbone, mid, head)
        self.mode = mode

    def forward(self, x):
        with torch.no_grad():
            features = self.backbone(x)
            if self.mode != "eval":
                x_pos = {
                    k.strip("pos_"): v.clone()
                    if isinstance(v, torch.Tensor)
                    else copy.deepcopy(v)
                    for k, v in x.items()
                    if k.startswith("pos_")
                }
                pos_features = self.backbone(x_pos)
        x = self.mid(features)
        x = self.head(x)
        if self.mode != "eval":
            return {
                "features": features[:, 0, :],
                "pos_features": pos_features[:, 0, :],
                **x,
            }
        return {
            "features": features[:, 0, :],
            **x,
        }


class ContrastiveUnFrozenPartBackbone(UnfrozenPartBackbone):
    """Freezes the backbone of a network."""

    def __init__(self, backbone, mid, head, mode):
        super().__init__(backbone, mid, head)
        self.mode = mode

    def forward(self, x):
        features = self.backbone(x)
        if self.mode != "eval":
            x_pos = {
                k.strip("pos_"): v.clone()
                if isinstance(v, torch.Tensor)
                else copy.deepcopy(v)
                for k, v in x.items()
                if k.startswith("pos_")
            }
            pos_features = self.backbone(x_pos)
        x = self.mid(features)
        x = self.head(x)
        if self.mode != "eval":
            return {
                "features": features[:, 0, :],
                "pos_features": pos_features[:, 0, :],
                **x,
            }
        return {
            "features": features[:, 0, :],
            **x,
        }


class ContrastiveUnFrozenBackbone(UnfrozenBackbone):
    """Freezes the backbone of a network."""

    def __init__(self, backbone, mid, head, mode):
        super().__init__(backbone, mid, head)
        self.mode = mode

    def forward(self, x):
        features = self.backbone(x)
        if self.mode != "eval":
            x_pos = {
                k.strip("pos_"): v.clone()
                if isinstance(v, torch.Tensor)
                else copy.deepcopy(v)
                for k, v in x.items()
                if k.startswith("pos_")
            }
            pos_features = self.backbone(x_pos)
        x = self.mid(features)
        x = self.head(x)
        if self.mode != "eval":
            return {
                "features": features[:, 0, :],
                "pos_features": pos_features[:, 0, :],
                **x,
            }
        return {
            "features": features[:, 0, :],
            **x,
        }


class TextContrastiveUnFrozenBackbone(UnfrozenBackbone):
    """Freezes the backbone of a network."""

    def __init__(self, backbone, mid, head):
        super().__init__(backbone, mid, head)

    def forward(self, x):
        con, features = self.backbone(x)
        x = self.mid(features)
        x = self.head(x)
        return {
            "features": con,
            **x,
        }


class LoraBackbone(nn.Module):
    """Wraps the backbone in a PEFT model for LoRA tuning."""

    def __init__(self, backbone, mid, head, r, alpha, dropout, bias):
        super().__init__()
        self.backbone = backbone.instance
        self.mid = mid.instance
        self.head = head.instance
        self.target_key = head.target_key
        freeze(self.backbone)

        config = LoraConfig(
            r=r,
            lora_alpha=alpha,
            lora_dropout=dropout,
            bias=bias,
            target_modules=["q_proj", "k_proj", "v_proj"],
        )
        self.backbone = get_peft_model(self.backbone, config)
        print_trainable_parameters(self)

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """
        x = self.backbone(x)
        x = self.mid(x)
        return self.head(x)


class HybridFrozenBackbone(FrozenBackbone):
    """Freezes the backbone of a network."""

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """

        gt_label = x["label"] if self.training else None

        with torch.no_grad():
            x = self.backbone(x)
        x = self.mid(x)
        x = self.head(x, gt_label)
        return x


class HybridUnfrozenBackbone(UnfrozenBackbone):
    """Unfreezes the backbone of a network."""

    def forward(self, x):
        """Forward pass of the network.

        x : Union[torch.Tensor, dict] with the output of the backbone.

        """

        gt_label = x["label"] if self.training else None

        x = self.backbone(x)
        x = self.mid(x)
        x = self.head(x, gt_label)
        return x


class ContrastiveHybridUnFrozenBackbone(UnfrozenBackbone):
    """Freezes the backbone of a network."""

    def __init__(self, backbone, mid, head, mode):
        super().__init__(backbone, mid, head)
        self.mode = mode

    def forward(self, x):
        gt_label = x["label"] if self.training else None
        features = self.backbone(x)
        if self.mode != "eval":
            x_pos = {
                k.strip("pos_"): v.clone()
                if isinstance(v, torch.Tensor)
                else copy.deepcopy(v)
                for k, v in x.items()
                if k.startswith("pos_")
            }
            pos_features = self.backbone(x_pos)
        x = self.mid(features)
        x = self.head(x, gt_label)
        if self.mode != "eval":
            return {
                "features": features[:, 0, :],
                "pos_features": pos_features[:, 0, :],
                **x,
            }
        return {
            "features": features[:, 0, :],
            **x,
        }