|
from transformers import CLIPProcessor
|
|
|
|
|
|
class ClipTransform(object):
|
|
def __init__(self, split):
|
|
self.transform = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
|
|
|
|
def __call__(self, x):
|
|
|
|
return self.transform(images=[x], return_tensors="pt")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import glob
|
|
import torchvision.transforms as transforms
|
|
from torchvision.utils import save_image
|
|
from omegaconf import DictConfig, OmegaConf
|
|
from hydra.utils import instantiate
|
|
import torch
|
|
from PIL import Image
|
|
|
|
fast_clip_config = OmegaConf.load(
|
|
"./configs/dataset/train_transform/fast_clip.yaml"
|
|
)
|
|
fast_clip_transform = instantiate(fast_clip_config)
|
|
clip_transform = ClipTransform(None)
|
|
|
|
img_paths = glob.glob("./datasets/osv5m/test/images/*.jpg")
|
|
original_imgs, re_implemted_imgs, diff = [], [], []
|
|
|
|
for i in range(16):
|
|
img = Image.open(img_paths[i])
|
|
clip_img = clip_transform(img)
|
|
fast_clip_img = fast_clip_transform(img)
|
|
original_imgs.append(clip_img)
|
|
re_implemted_imgs.append(fast_clip_img)
|
|
max_diff = (clip_img - fast_clip_img).abs()
|
|
diff.append(max_diff)
|
|
if max_diff.max() > 1e-5:
|
|
print(max_diff.max())
|
|
original_imgs = torch.stack(original_imgs)
|
|
re_implemted_imgs = torch.stack(re_implemted_imgs)
|
|
diff = torch.stack(diff)
|
|
|