File size: 1,177 Bytes
942989d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import pipeline
pipe = pipeline("image-classification", "trpakov/vit-pneumonia")
def classify_image(image):
outputs = pipe(image)
outputs = {
x["label"]: x["score"] for x in sorted(outputs, key=lambda x: x["label"])
}
return outputs
with gr.Blocks(
title="ViT Chest X-ray Classification",
) as demo:
gr.Markdown("# ViT Chest X-ray Pneumonia Classification")
with gr.Row():
with gr.Column():
gr.Markdown(
"Classify chest x-ray scans as either having or not having pneumonia"
)
input_image = gr.Image(type="pil")
classify_button = gr.Button("Classify!")
with gr.Column():
output_label = gr.Label(label="Probabilities", num_top_classes=2)
with gr.Row():
gr.Examples(
"./samples",
inputs=input_image,
outputs=output_label,
cache_examples=True,
fn=classify_image,
run_on_click=True,
)
classify_button.click(fn=classify_image, inputs=input_image, outputs=output_label)
demo.launch(debug=True, enable_queue=True)
|