VQA-datamining / app.py
truong-xuan-linh's picture
update visualize
1d3d5c8
import glob
import streamlit as st
from streamlit_image_select import image_select
import streamlit.components.v1 as components
# Trick to not init function multitime
if "model" not in st.session_state:
print("INIT MODEL")
from src.model import Model
st.session_state.model = Model()
print("DONE INIT MODEL")
st.set_page_config(page_title="VQA", layout="wide")
hide_menu_style = """
<style>
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
mapper = {
"images/000000000645.jpg": "Đây là đâu",
"images/000000000661.jpg": "Tốc độ tối đa trên đoạn đường này là bao nhiêu",
"images/000000000674.jpg": "Còn bao xa nữa là tới Huế",
"images/000000000706.jpg": "Cầu này dài bao nhiêu",
"images/000000000777.jpg": "Chè khúc bạch giá bao nhiêu",
}
image = st.file_uploader(
"Choose an image file",
type=[
"jpg",
"jpeg",
"png",
"webp",
],
)
example = image_select("Examples", glob.glob("images/*.jpg"))
if image:
bytes_data = image.getvalue()
with open("test.png", "wb") as f:
f.write(bytes_data)
f.close()
st.session_state.image = "test.png"
st.session_state.question = ""
else:
st.session_state.question = mapper[example]
st.session_state.image = example
if "image" in st.session_state:
st.image(st.session_state.image)
question = st.text_input("**Question:** ", value=st.session_state.question)
visualize = True
if question:
answer, text_attention_html, images_visualize = (
st.session_state.model.inference(
st.session_state.image, question, visualize
)
)
st.write(f"**Answer:** {answer}")
if visualize:
st.write("**Explanation**")
col1, col2 = st.columns([1, 2])
# st.markdown(text_attention_html, unsafe_allow_html=True)
with col1:
st.write("*Text Attention*")
components.html(text_attention_html, height=960, scrolling=True)
with col2:
st.write("*Image Attention*")
for image_visualize in images_visualize:
st.image(image_visualize)