File size: 12,339 Bytes
475fa42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09aa543
475fa42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os.path

import gradio as gr
import json
import requests
import time
from gradio_modal import Modal
from io import BytesIO

TRYON_SERVER_HOST = "https://prod.server.tryonlabs.ai"
TRYON_SERVER_PORT = "80"
if TRYON_SERVER_PORT == "80":
    TRYON_SERVER_URL = f"{TRYON_SERVER_HOST}"
else:
    TRYON_SERVER_URL = f"{TRYON_SERVER_HOST}:{TRYON_SERVER_PORT}"

TRYON_SERVER_API_URL = f"{TRYON_SERVER_URL}/api/v1/"


def start_model_swap(input_image, prompt, cls, seed, guidance_scale, num_results, strength, inference_steps):
    # make a request to TryOn Server
    # 1. create an experiment image
    print("inputs:", input_image, prompt, cls, seed, guidance_scale, num_results, strength, inference_steps)

    if input_image is None:
        raise gr.Error("Select an image!")

    if prompt is None or prompt == "":
        raise gr.Error("Enter a prompt!")

    token = load_token()
    if token is None or token == "":
        raise gr.Error("You need to login first!")
    else:
        login(token)

    byte_io = BytesIO()
    input_image.save(byte_io, 'png')
    byte_io.seek(0)

    r = requests.post(f"{TRYON_SERVER_API_URL}experiment_image/",
                      files={"image": (
                          'ei_image.png',
                          byte_io,
                          'image/png'
                      )},
                      data={
                          "type": "model",
                          "preprocess": "false"},
                      headers={
                          "Authorization": f"Bearer {token}"
                      })
    # print(r.json())
    if r.status_code == 200 or r.status_code == 201:
        print("Experiment image created successfully", r.json())
        res = r.json()
        # 2 create an experiment
        r2 = requests.post(f"{TRYON_SERVER_API_URL}experiment/",
                           data={
                               "model_id": res['id'],
                               "action": "model_swap",
                               "params": json.dumps({"prompt": prompt,
                                                     "guidance_scale": guidance_scale,
                                                     "strength": strength,
                                                     "num_inference_steps": inference_steps,
                                                     "seed": seed,
                                                     "garment_class": f"{cls} garment",
                                                     "negative_prompt": "(hands:1.15), disfigured, ugly, bad, immature"
                                                                        ", cartoon, anime, 3d, painting, b&w, (ugly),"
                                                                        " (pixelated), watermark, glossy, smooth, "
                                                                        "earrings, necklace",
                                                     "num_results": num_results})
                           },
                           headers={
                               "Authorization": f"Bearer {token}"
                           })
        if r2.status_code == 200 or r2.status_code == 201:
            # 3. keep checking the status of the experiment
            res2 = r2.json()
            print("Experiment created successfully", res2)
            time.sleep(10)

            experiment = res2['experiment']
            status = fetch_experiment_status(experiment_id=experiment['id'], token=token)
            status_status = status['status']
            while status_status == "running":
                time.sleep(10)
                status = fetch_experiment_status(experiment_id=experiment['id'], token=token)
                status_status = status['status']
                print(f"Current status: {status_status}")

            if status['status'] == "success":
                print("Experiment successful")
                print(f"Results:{status['result_images']}")
                return status['result_images']
            elif status['status'] == "failed":
                print("Experiment failed")
                raise gr.Error("Experiment failed")
        else:
            print(f"Error: {r2.text}")
            raise gr.Error(f"Failure: {r2.text}")
    else:
        print(f"Error: {r.text}")
        raise gr.Error(f"Failure: {r.text}")


def fetch_experiment_status(experiment_id, token):
    print(f"experiment id:{experiment_id}")

    r3 = requests.get(f"{TRYON_SERVER_API_URL}experiment/{experiment_id}/",
                      headers={
                          "Authorization": f"Bearer {token}"
                      })
    if r3.status_code == 200:
        res = r3.json()
        if res['status'] == "running":
            return {"status": "running"}
        elif res['status'] == "success":
            experiment = r3.json()['experiment']
            result_images = [f"{TRYON_SERVER_URL}/{experiment['result']['image_url']}"]
            if len(experiment['results']) > 0:
                for result in experiment['results']:
                    result_images.append(f"{TRYON_SERVER_URL}/{result['image_url']}")
            return {"status": "success", "result_images": result_images}
        elif res['status'] == "failed":
            return {"status": "failed"}
    else:
        print(f"Error: {r3.text}")
        return {"status": "failed"}


def get_user_credits(token):
    if token == "":
        return None

    r = requests.get(f"{TRYON_SERVER_API_URL}user/get/", headers={
        "Authorization": f"Bearer {token}"
    })
    if r.status_code == 200:
        res = r.json()
        return res['credits']
    else:
        print(f"Error: {r.text}")
        return None


def load_token():
    if os.path.exists(".token"):
        with open(".token", "r") as f:
            return json.load(f)['token']
    else:
        return None


def save_token(access_token):
    if access_token != "":
        with open(".token", "w") as f:
            json.dump({"token": access_token}, f)
    else:
        raise gr.Error("No token provided!")


def is_logged_in():
    loaded_token = load_token()
    if loaded_token is None or loaded_token == "":
        return False
    else:
        return True


def login(token):
    print("logging in...")
    # validate token
    r = requests.post(f"{TRYON_SERVER_URL}/api/token/verify/", data={"token": token})
    if r.status_code == 200:
        save_token(token)
        return True
    else:
        raise gr.Error("Login failed")


def logout():
    print("logged out")
    with open(".token", "w") as f:
        json.dump({"token": ""}, f)
    return [False, ""]


css = """
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
#credits-col-container{
    display:flex;
    justify-content: right;
    align-items: center;
    font-size: 24px;
    margin-right: 1rem;
}
#login-modal{
    max-width: 728px;
    margin: 0 auto;
    margin-top: 1rem;
    margin-bottom: 1rem;
}
#login-logout-btn{
    display:inline;
    max-width: 124px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Default()) as demo:
    print("is logged in:", is_logged_in())
    logged_in = gr.State(is_logged_in())
    if os.path.exists(".token"):
        with open(".token", "r") as f:
            user_token = gr.State(json.load(f)["token"])
    else:
        user_token = gr.State("")

    with Modal(visible=False) as modal:
        @gr.render(inputs=user_token)
        def rerender1(user_token1):
            with gr.Column(elem_id="login-modal"):
                access_token = gr.Textbox(
                    label="Token",
                    lines=1,
                    value=user_token1,
                    type="password",
                    placeholder="Enter your access token here!",
                    info="Visit https://playground.tryonlabs.ai to retrieve your access token."
                )

                login_submit_btn = gr.Button("Login", scale=1, variant='primary')
                login_submit_btn.click(
                    fn=lambda access_token: (login(access_token), Modal(visible=False), access_token),
                    inputs=[access_token], outputs=[logged_in, modal, user_token],
                    concurrency_limit=1)

    with gr.Row(elem_id="col-container"):
        with gr.Column():
            gr.Markdown(f"""
            # Model Swap AI
            ## by TryOn Labs (https://www.tryonlabs.ai)
            Swap a human model with a artificial model generated by Artificial Model while keeping the garment intact.
            """)


        @gr.render(inputs=logged_in)
        def rerender(is_logged_in):
            with gr.Column():
                if not is_logged_in:
                    with gr.Row(elem_id="credits-col-container"):
                        login_btn = gr.Button(value="Login", variant='primary', elem_id="login-logout-btn", size="sm")
                        login_btn.click(lambda: Modal(visible=True), None, modal)
                else:
                    user_credits = get_user_credits(load_token())
                    print("user_credits", user_credits)
                    gr.HTML(f"""<div><p id="credits-col-container">Your Credits: 
                    {user_credits if user_credits is not None else "0"}</p>
                    <p style="text-align: right;">Visit <a href="https://playground.tryonlabs.ai">
                    TryOn AI Playground</a> to acquire more credits</p></div>""")
                    with gr.Row(elem_id="credits-col-container"):
                        logout_btn = gr.Button(value="Logout", scale=1, variant='primary', size="sm",
                                               elem_id="login-logout-btn")
                        logout_btn.click(fn=logout, inputs=None, outputs=[logged_in, user_token], concurrency_limit=1)

    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Original image", type='pil', height="400px", show_label=True)
                prompt = gr.Textbox(
                    label="Prompt",
                    lines=3,
                    placeholder="Enter your prompt here!",
                )
                dropdown = gr.Dropdown(["upper", "lower", "dress"], value="upper", label="Retain garment",
                                       info="Select the garment type you want to retain in the generated image!")

            gallery = gr.Gallery(
                label="Generated images", show_label=True, elem_id="gallery"
                , columns=[3], rows=[1], object_fit="contain", height="auto")

            # output_image = gr.Image(label="Swapped model", type='pil', height="400px", show_label=True,
            #                         show_download_button=True)

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                seed = gr.Number(label="Seed", value=-1, interactive=True, minimum=-1)
                guidance_scale = gr.Number(label="Guidance Scale", value=7.5, interactive=True, minimum=0.0,
                                           maximum=10.0,
                                           step=0.1)
                num_results = gr.Number(label="Number of results", value=2, minimum=1, maximum=5)

            with gr.Row():
                strength = gr.Slider(0.00, 1.00, value=0.99, label="Strength",
                                     info="Choose between 0.00 and 1.00", step=0.01, interactive=True)
                inference_steps = gr.Number(label="Inference Steps", value=20, interactive=True, minimum=1, step=1)

        with gr.Row():
            submit_button = gr.Button("Submit", variant='primary', scale=1)
            reset_button = gr.ClearButton(value="Reset", scale=1)

    gr.on(
        triggers=[submit_button.click],
        fn=start_model_swap,
        inputs=[input_image, prompt, dropdown, seed, guidance_scale, num_results, strength, inference_steps],
        outputs=[gallery]
    )

    reset_button.click(
        fn=lambda: (None, None, "upper", None, -1, 7.5, 2, 0.99, 20),
        inputs=[],
        outputs=[input_image, prompt, dropdown, gallery, seed, guidance_scale,
                 num_results, strength, inference_steps],
        concurrency_limit=1,
    )

if __name__ == '__main__':
    demo.launch()