Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
# 測試是否能正確讀取 Hugging Face API token
|
4 |
-
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
5 |
-
print(f"Your API Token: {HF_API_TOKEN}")
|
6 |
-
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
import os
|
10 |
|
11 |
-
# 使用
|
12 |
-
API_URL = "https://api-inference.huggingface.co/models/
|
13 |
-
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
14 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
15 |
|
16 |
def query(payload):
|
@@ -24,7 +18,7 @@ def query(payload):
|
|
24 |
return response.content # 返回圖片的二進位數據
|
25 |
|
26 |
def generate_dinner_image(hint):
|
27 |
-
#
|
28 |
dinner_hints = {
|
29 |
"這是一個有很多起司的東西,通常切成片狀。": "a pizza with lots of cheese",
|
30 |
"這是一道義大利麵,通常搭配奶油醬。": "a plate of creamy spaghetti",
|
@@ -33,30 +27,27 @@ def generate_dinner_image(hint):
|
|
33 |
"這是亞洲常見的食物,通常搭配醬油。": "sushi with soy sauce"
|
34 |
}
|
35 |
|
36 |
-
# 根據提示生成晚餐描述
|
37 |
description = dinner_hints.get(hint, "delicious food")
|
38 |
|
39 |
# 調用 API 生成圖像
|
40 |
output = query({"inputs": description})
|
41 |
|
42 |
-
# 如果返回錯誤信息,顯示錯誤
|
43 |
if isinstance(output, str) and output.startswith("Error:"):
|
44 |
-
return output #
|
45 |
|
46 |
# 保存生成的圖像到文件
|
47 |
with open("generated_dinner.png", "wb") as f:
|
48 |
f.write(output)
|
49 |
|
50 |
-
# 返回生成的圖像文件
|
51 |
return "generated_dinner.png"
|
52 |
|
53 |
# 創建 Gradio 介面
|
54 |
interface = gr.Interface(
|
55 |
fn=generate_dinner_image,
|
56 |
inputs=gr.Textbox(lines=2, placeholder="輸入提示內容來生成晚餐圖片...(例如:這是一個有很多起司的東西,通常切成片狀。)"),
|
57 |
-
outputs="image",
|
58 |
title="最強第一組",
|
59 |
-
description="
|
60 |
)
|
61 |
|
62 |
# 啟動 Gradio 應用
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import os
|
4 |
|
5 |
+
# 使用 Dreamlike 模型來生成圖像
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/dreamlike-art/dreamlike-photoreal-2.0"
|
7 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
8 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
9 |
|
10 |
def query(payload):
|
|
|
18 |
return response.content # 返回圖片的二進位數據
|
19 |
|
20 |
def generate_dinner_image(hint):
|
21 |
+
# 使用繁體中文提示對應的晚餐描述
|
22 |
dinner_hints = {
|
23 |
"這是一個有很多起司的東西,通常切成片狀。": "a pizza with lots of cheese",
|
24 |
"這是一道義大利麵,通常搭配奶油醬。": "a plate of creamy spaghetti",
|
|
|
27 |
"這是亞洲常見的食物,通常搭配醬油。": "sushi with soy sauce"
|
28 |
}
|
29 |
|
|
|
30 |
description = dinner_hints.get(hint, "delicious food")
|
31 |
|
32 |
# 調用 API 生成圖像
|
33 |
output = query({"inputs": description})
|
34 |
|
|
|
35 |
if isinstance(output, str) and output.startswith("Error:"):
|
36 |
+
return output # 返回錯誤訊息
|
37 |
|
38 |
# 保存生成的圖像到文件
|
39 |
with open("generated_dinner.png", "wb") as f:
|
40 |
f.write(output)
|
41 |
|
|
|
42 |
return "generated_dinner.png"
|
43 |
|
44 |
# 創建 Gradio 介面
|
45 |
interface = gr.Interface(
|
46 |
fn=generate_dinner_image,
|
47 |
inputs=gr.Textbox(lines=2, placeholder="輸入提示內容來生成晚餐圖片...(例如:這是一個有很多起司的東西,通常切成片狀。)"),
|
48 |
+
outputs="image",
|
49 |
title="最強第一組",
|
50 |
+
description="根據您的描述生成晚餐圖片!"
|
51 |
)
|
52 |
|
53 |
# 啟動 Gradio 應用
|