Spaces:
Paused
Paused
File size: 15,750 Bytes
ad06aed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from typing import Any, Dict, Optional
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
import numpy
import torch
import torch.nn as nn
import torch.utils.checkpoint
import torch.distributed
import transformers
from collections import OrderedDict
from PIL import Image
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
EulerAncestralDiscreteScheduler,
UNet2DConditionModel,
ImagePipelineOutput
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
from diffusers.utils.import_utils import is_xformers_available
def to_rgb_image(maybe_rgba: Image.Image):
if maybe_rgba.mode == 'RGB':
return maybe_rgba
elif maybe_rgba.mode == 'RGBA':
rgba = maybe_rgba
img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
img = Image.fromarray(img, 'RGB')
img.paste(rgba, mask=rgba.getchannel('A'))
return img
else:
raise ValueError("Unsupported image type.", maybe_rgba.mode)
class ReferenceOnlyAttnProc(torch.nn.Module):
def __init__(
self,
chained_proc,
enabled=False,
name=None
) -> None:
super().__init__()
self.enabled = enabled
self.chained_proc = chained_proc
self.name = name
def __call__(
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
mode="w", ref_dict: dict = None, is_cfg_guidance = False
) -> Any:
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
if self.enabled and is_cfg_guidance:
res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
hidden_states = hidden_states[1:]
encoder_hidden_states = encoder_hidden_states[1:]
if self.enabled:
if mode == 'w':
ref_dict[self.name] = encoder_hidden_states
elif mode == 'r':
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
elif mode == 'm':
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
else:
assert False, mode
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
if self.enabled and is_cfg_guidance:
res = torch.cat([res0, res])
return res
class RefOnlyNoisedUNet(torch.nn.Module):
def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
super().__init__()
self.unet = unet
self.train_sched = train_sched
self.val_sched = val_sched
unet_lora_attn_procs = dict()
for name, _ in unet.attn_processors.items():
if torch.__version__ >= '2.0':
default_attn_proc = AttnProcessor2_0()
elif is_xformers_available():
default_attn_proc = XFormersAttnProcessor()
else:
default_attn_proc = AttnProcessor()
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
)
unet.set_attn_processor(unet_lora_attn_procs)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
if is_cfg_guidance:
encoder_hidden_states = encoder_hidden_states[1:]
class_labels = class_labels[1:]
self.unet(
noisy_cond_lat, timestep,
encoder_hidden_states=encoder_hidden_states,
class_labels=class_labels,
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
**kwargs
)
def forward(
self, sample, timestep, encoder_hidden_states, class_labels=None,
*args, cross_attention_kwargs,
down_block_res_samples=None, mid_block_res_sample=None,
**kwargs
):
cond_lat = cross_attention_kwargs['cond_lat']
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
noise = torch.randn_like(cond_lat)
if self.training:
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
else:
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
ref_dict = {}
self.forward_cond(
noisy_cond_lat, timestep,
encoder_hidden_states, class_labels,
ref_dict, is_cfg_guidance, **kwargs
)
weight_dtype = self.unet.dtype
return self.unet(
sample, timestep,
encoder_hidden_states, *args,
class_labels=class_labels,
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
down_block_additional_residuals=[
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
] if down_block_res_samples is not None else None,
mid_block_additional_residual=(
mid_block_res_sample.to(dtype=weight_dtype)
if mid_block_res_sample is not None else None
),
**kwargs
)
def scale_latents(latents):
latents = (latents - 0.22) * 0.75
return latents
def unscale_latents(latents):
latents = latents / 0.75 + 0.22
return latents
def scale_image(image):
image = image * 0.5 / 0.8
return image
def unscale_image(image):
image = image / 0.5 * 0.8
return image
class DepthControlUNet(torch.nn.Module):
def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None:
super().__init__()
self.unet = unet
if controlnet is None:
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
else:
self.controlnet = controlnet
DefaultAttnProc = AttnProcessor2_0
if is_xformers_available():
DefaultAttnProc = XFormersAttnProcessor
self.controlnet.set_attn_processor(DefaultAttnProc())
self.conditioning_scale = conditioning_scale
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
cross_attention_kwargs = dict(cross_attention_kwargs)
control_depth = cross_attention_kwargs.pop('control_depth')
down_block_res_samples, mid_block_res_sample = self.controlnet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=control_depth,
conditioning_scale=self.conditioning_scale,
return_dict=False,
)
return self.unet(
sample,
timestep,
encoder_hidden_states=encoder_hidden_states,
down_block_res_samples=down_block_res_samples,
mid_block_res_sample=mid_block_res_sample,
cross_attention_kwargs=cross_attention_kwargs
)
class ModuleListDict(torch.nn.Module):
def __init__(self, procs: dict) -> None:
super().__init__()
self.keys = sorted(procs.keys())
self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
def __getitem__(self, key):
return self.values[self.keys.index(key)]
class SuperNet(torch.nn.Module):
def __init__(self, state_dict: Dict[str, torch.Tensor]):
super().__init__()
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
self.layers = torch.nn.ModuleList(state_dict.values())
self.mapping = dict(enumerate(state_dict.keys()))
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
# .processor for unet, .self_attn for text encoder
self.split_keys = [".processor", ".self_attn"]
# we add a hook to state_dict() and load_state_dict() so that the
# naming fits with `unet.attn_processors`
def map_to(module, state_dict, *args, **kwargs):
new_state_dict = {}
for key, value in state_dict.items():
num = int(key.split(".")[1]) # 0 is always "layers"
new_key = key.replace(f"layers.{num}", module.mapping[num])
new_state_dict[new_key] = value
return new_state_dict
def remap_key(key, state_dict):
for k in self.split_keys:
if k in key:
return key.split(k)[0] + k
return key.split('.')[0]
def map_from(module, state_dict, *args, **kwargs):
all_keys = list(state_dict.keys())
for key in all_keys:
replace_key = remap_key(key, state_dict)
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
state_dict[new_key] = state_dict[key]
del state_dict[key]
self._register_state_dict_hook(map_to)
self._register_load_state_dict_pre_hook(map_from, with_module=True)
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
tokenizer: transformers.CLIPTokenizer
text_encoder: transformers.CLIPTextModel
vision_encoder: transformers.CLIPVisionModelWithProjection
feature_extractor_clip: transformers.CLIPImageProcessor
unet: UNet2DConditionModel
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
vae: AutoencoderKL
ramping: nn.Linear
feature_extractor_vae: transformers.CLIPImageProcessor
depth_transforms_multi = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
vision_encoder: transformers.CLIPVisionModelWithProjection,
feature_extractor_clip: CLIPImageProcessor,
feature_extractor_vae: CLIPImageProcessor,
ramping_coefficients: Optional[list] = None,
safety_checker=None,
):
DiffusionPipeline.__init__(self)
self.register_modules(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
unet=unet, scheduler=scheduler, safety_checker=None,
vision_encoder=vision_encoder,
feature_extractor_clip=feature_extractor_clip,
feature_extractor_vae=feature_extractor_vae
)
self.register_to_config(ramping_coefficients=ramping_coefficients)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def prepare(self):
train_sched = DDPMScheduler.from_config(self.scheduler.config)
if isinstance(self.unet, UNet2DConditionModel):
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
self.prepare()
self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
def encode_condition_image(self, image: torch.Tensor):
image = self.vae.encode(image).latent_dist.sample()
return image
@torch.no_grad()
def __call__(
self,
image: Image.Image = None,
prompt = "",
*args,
num_images_per_prompt: Optional[int] = 1,
guidance_scale=4.0,
depth_image: Image.Image = None,
output_type: Optional[str] = "pil",
width=640,
height=960,
num_inference_steps=28,
return_dict=True,
**kwargs
):
self.prepare()
if image is None:
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
assert not isinstance(image, torch.Tensor)
image = to_rgb_image(image)
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
if depth_image is not None and hasattr(self.unet, "controlnet"):
depth_image = to_rgb_image(depth_image)
depth_image = self.depth_transforms_multi(depth_image).to(
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
)
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
cond_lat = self.encode_condition_image(image)
if guidance_scale > 1:
negative_lat = self.encode_condition_image(torch.zeros_like(image))
cond_lat = torch.cat([negative_lat, cond_lat])
encoded = self.vision_encoder(image_2, output_hidden_states=False)
global_embeds = encoded.image_embeds
global_embeds = global_embeds.unsqueeze(-2)
if hasattr(self, "encode_prompt"):
encoder_hidden_states = self.encode_prompt(
prompt,
self.device,
num_images_per_prompt,
False
)[0]
else:
encoder_hidden_states = self._encode_prompt(
prompt,
self.device,
num_images_per_prompt,
False
)
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
cak = dict(cond_lat=cond_lat)
if hasattr(self.unet, "controlnet"):
cak['control_depth'] = depth_image
latents: torch.Tensor = super().__call__(
None,
*args,
cross_attention_kwargs=cak,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
prompt_embeds=encoder_hidden_states,
num_inference_steps=num_inference_steps,
output_type='latent',
width=width,
height=height,
**kwargs
).images
latents = unscale_latents(latents)
if not output_type == "latent":
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
else:
image = latents
image = self.image_processor.postprocess(image, output_type=output_type)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
|