Spaces:
Paused
Paused
File size: 13,947 Bytes
ad06aed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
import pytorch_lightning as pl
from einops import rearrange, repeat
from src.utils.train_util import instantiate_from_config
# Regulrarization loss for FlexiCubes
def sdf_reg_loss_batch(sdf, all_edges):
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
return sdf_diff
class MVRecon(pl.LightningModule):
def __init__(
self,
lrm_generator_config,
input_size=256,
render_size=512,
init_ckpt=None,
):
super(MVRecon, self).__init__()
self.input_size = input_size
self.render_size = render_size
# init modules
self.lrm_generator = instantiate_from_config(lrm_generator_config)
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg')
# Load weights from pretrained MVRecon model, and use the mlp
# weights to initialize the weights of sdf and rgb mlps.
if init_ckpt is not None:
sd = torch.load(init_ckpt, map_location='cpu')['state_dict']
sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')}
sd_fc = {}
for k, v in sd.items():
if k.startswith('lrm_generator.synthesizer.decoder.net.'):
if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): # last layer
# Here we assume the density filed's isosurface threshold is t,
# we reverse the sign of density filed to initialize SDF field.
# -(w*x + b - t) = (-w)*x + (t - b)
if 'weight' in k:
sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1]
else:
sd_fc[k.replace('net.', 'net_sdf.')] = 3.0 - v[0:1]
sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4]
else:
sd_fc[k.replace('net.', 'net_sdf.')] = v
sd_fc[k.replace('net.', 'net_rgb.')] = v
else:
sd_fc[k] = v
sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()}
# missing `net_deformation` and `net_weight` parameters
self.lrm_generator.load_state_dict(sd_fc, strict=False)
print(f'Loaded weights from {init_ckpt}')
self.validation_step_outputs = []
def on_fit_start(self):
device = torch.device(f'cuda:{self.global_rank}')
self.lrm_generator.init_flexicubes_geometry(device)
if self.global_rank == 0:
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
def prepare_batch_data(self, batch):
lrm_generator_input = {}
render_gt = {}
# input images
images = batch['input_images']
images = v2.functional.resize(
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
lrm_generator_input['images'] = images.to(self.device)
# input cameras and render cameras
input_c2ws = batch['input_c2ws']
input_Ks = batch['input_Ks']
target_c2ws = batch['target_c2ws']
render_c2ws = torch.cat([input_c2ws, target_c2ws], dim=1)
render_w2cs = torch.linalg.inv(render_c2ws)
input_extrinsics = input_c2ws.flatten(-2)
input_extrinsics = input_extrinsics[:, :, :12]
input_intrinsics = input_Ks.flatten(-2)
input_intrinsics = torch.stack([
input_intrinsics[:, :, 0], input_intrinsics[:, :, 4],
input_intrinsics[:, :, 2], input_intrinsics[:, :, 5],
], dim=-1)
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
# add noise to input_cameras
cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02
lrm_generator_input['cameras'] = cameras.to(self.device)
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
# target images
target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1)
target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1)
target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1)
target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1)
render_size = self.render_size
target_images = v2.functional.resize(
target_images, render_size, interpolation=3, antialias=True).clamp(0, 1)
target_depths = v2.functional.resize(
target_depths, render_size, interpolation=0, antialias=True)
target_alphas = v2.functional.resize(
target_alphas, render_size, interpolation=0, antialias=True)
target_normals = v2.functional.resize(
target_normals, render_size, interpolation=3, antialias=True)
lrm_generator_input['render_size'] = render_size
render_gt['target_images'] = target_images.to(self.device)
render_gt['target_depths'] = target_depths.to(self.device)
render_gt['target_alphas'] = target_alphas.to(self.device)
render_gt['target_normals'] = target_normals.to(self.device)
return lrm_generator_input, render_gt
def prepare_validation_batch_data(self, batch):
lrm_generator_input = {}
# input images
images = batch['input_images']
images = v2.functional.resize(
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
lrm_generator_input['images'] = images.to(self.device)
# input cameras
input_c2ws = batch['input_c2ws'].flatten(-2)
input_Ks = batch['input_Ks'].flatten(-2)
input_extrinsics = input_c2ws[:, :, :12]
input_intrinsics = torch.stack([
input_Ks[:, :, 0], input_Ks[:, :, 4],
input_Ks[:, :, 2], input_Ks[:, :, 5],
], dim=-1)
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
lrm_generator_input['cameras'] = cameras.to(self.device)
# render cameras
render_c2ws = batch['render_c2ws']
render_w2cs = torch.linalg.inv(render_c2ws)
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
lrm_generator_input['render_size'] = 384
return lrm_generator_input
def forward_lrm_generator(self, images, cameras, render_cameras, render_size=512):
planes = torch.utils.checkpoint.checkpoint(
self.lrm_generator.forward_planes,
images,
cameras,
use_reentrant=False,
)
out = self.lrm_generator.forward_geometry(
planes,
render_cameras,
render_size,
)
return out
def forward(self, lrm_generator_input):
images = lrm_generator_input['images']
cameras = lrm_generator_input['cameras']
render_cameras = lrm_generator_input['render_cameras']
render_size = lrm_generator_input['render_size']
out = self.forward_lrm_generator(
images, cameras, render_cameras, render_size=render_size)
return out
def training_step(self, batch, batch_idx):
lrm_generator_input, render_gt = self.prepare_batch_data(batch)
render_out = self.forward(lrm_generator_input)
loss, loss_dict = self.compute_loss(render_out, render_gt)
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
if self.global_step % 1000 == 0 and self.global_rank == 0:
B, N, C, H, W = render_gt['target_images'].shape
N_in = lrm_generator_input['images'].shape[1]
target_images = rearrange(
render_gt['target_images'], 'b n c h w -> b c h (n w)')
render_images = rearrange(
render_out['img'], 'b n c h w -> b c h (n w)')
target_alphas = rearrange(
repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
render_alphas = rearrange(
repeat(render_out['mask'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
target_depths = rearrange(
repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
render_depths = rearrange(
repeat(render_out['depth'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
target_normals = rearrange(
render_gt['target_normals'], 'b n c h w -> b c h (n w)')
render_normals = rearrange(
render_out['normal'], 'b n c h w -> b c h (n w)')
MAX_DEPTH = torch.max(target_depths)
target_depths = target_depths / MAX_DEPTH * target_alphas
render_depths = render_depths / MAX_DEPTH
grid = torch.cat([
target_images, render_images,
target_alphas, render_alphas,
target_depths, render_depths,
target_normals, render_normals,
], dim=-2)
grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1))
image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')
save_image(grid, image_path)
print(f"Saved image to {image_path}")
return loss
def compute_loss(self, render_out, render_gt):
# NOTE: the rgb value range of OpenLRM is [0, 1]
render_images = render_out['img']
target_images = render_gt['target_images'].to(render_images)
render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
loss_mse = F.mse_loss(render_images, target_images)
loss_lpips = 2.0 * self.lpips(render_images, target_images)
render_alphas = render_out['mask']
target_alphas = render_gt['target_alphas']
loss_mask = F.mse_loss(render_alphas, target_alphas)
render_depths = render_out['depth']
target_depths = render_gt['target_depths']
loss_depth = 0.5 * F.l1_loss(render_depths[target_alphas>0], target_depths[target_alphas>0])
render_normals = render_out['normal'] * 2.0 - 1.0
target_normals = render_gt['target_normals'] * 2.0 - 1.0
similarity = (render_normals * target_normals).sum(dim=-3).abs()
normal_mask = target_alphas.squeeze(-3)
loss_normal = 1 - similarity[normal_mask>0].mean()
loss_normal = 0.2 * loss_normal
# flexicubes regularization loss
sdf = render_out['sdf']
sdf_reg_loss = render_out['sdf_reg_loss']
sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01
_, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss
flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5
flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1
loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg
loss = loss_mse + loss_lpips + loss_mask + loss_normal + loss_reg
prefix = 'train'
loss_dict = {}
loss_dict.update({f'{prefix}/loss_mse': loss_mse})
loss_dict.update({f'{prefix}/loss_lpips': loss_lpips})
loss_dict.update({f'{prefix}/loss_mask': loss_mask})
loss_dict.update({f'{prefix}/loss_normal': loss_normal})
loss_dict.update({f'{prefix}/loss_depth': loss_depth})
loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy})
loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg})
loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg})
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
@torch.no_grad()
def validation_step(self, batch, batch_idx):
lrm_generator_input = self.prepare_validation_batch_data(batch)
render_out = self.forward(lrm_generator_input)
render_images = render_out['img']
render_images = rearrange(render_images, 'b n c h w -> b c h (n w)')
self.validation_step_outputs.append(render_images)
def on_validation_epoch_end(self):
images = torch.cat(self.validation_step_outputs, dim=-1)
all_images = self.all_gather(images)
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')
if self.global_rank == 0:
image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')
grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1))
save_image(grid, image_path)
print(f"Saved image to {image_path}")
self.validation_step_outputs.clear()
def configure_optimizers(self):
lr = self.learning_rate
optimizer = torch.optim.AdamW(
self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0)
return {'optimizer': optimizer, 'lr_scheduler': scheduler} |