File size: 13,579 Bytes
b888bcf
6a4b741
 
 
ad569d5
5715833
6db905d
6a4b741
 
 
b888bcf
f424501
82c73be
b888bcf
c4cd17d
b888bcf
c4cd17d
 
 
 
 
 
 
6db905d
09de898
82c73be
 
292ff11
c4cd17d
 
b888bcf
6a4b741
ad569d5
 
 
 
 
 
 
 
 
 
 
 
b888bcf
82c73be
 
b888bcf
 
 
b626f76
6a4b741
 
 
ad569d5
e04dd59
f424501
6a4b741
 
 
6b7c1b1
82c73be
c4cd17d
 
218550a
c4cd17d
09de898
114e952
980c828
114e952
49f1f69
efaf9fb
9ab148b
 
49f1f69
9ab148b
 
 
 
 
 
 
 
 
 
 
a38ab5b
 
9ab148b
 
6db905d
49f1f69
6db905d
b91379d
2ac5b77
5715833
 
 
 
 
 
 
 
834c4bb
5715833
 
 
24d15b9
5715833
 
 
 
 
 
8fe2fce
 
 
 
be2828d
c4cd17d
be2828d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f329ae
 
 
c4cd17d
82c73be
a8d5a97
c4cd17d
 
 
 
be2828d
 
c4cd17d
be2828d
ad569d5
 
be2828d
 
a99e3b7
 
 
 
 
 
 
 
be2828d
7f6d5a2
be2828d
ad569d5
 
6b7c1b1
be2828d
6db905d
 
ad569d5
 
6b7c1b1
6db905d
 
 
 
 
 
 
 
6b7c1b1
6db905d
 
a99e3b7
4d0f254
a99e3b7
be2828d
 
 
 
 
 
 
 
6a4b741
e04dd59
5715833
b888bcf
82c73be
 
 
 
 
 
 
 
 
 
 
b888bcf
5715833
 
 
 
 
 
6a4b741
82c73be
 
 
 
 
 
 
 
 
 
6a4b741
b888bcf
5715833
 
 
b888bcf
90a23cf
 
 
6397acd
 
 
 
5715833
 
 
6a4b741
 
5715833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82c73be
 
 
 
 
 
b888bcf
 
82c73be
24d15b9
b888bcf
 
 
 
8fe2fce
 
 
 
c4cd17d
5715833
82c73be
5715833
b888bcf
 
8fe2fce
 
 
 
c4cd17d
5715833
 
 
b888bcf
5715833
82c73be
8fe2fce
60e54b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import lora
from time import sleep
import copy
import json
import gc
import random
with open("sdxl_loras.json", "r") as file:
    data = json.load(file)
    sdxl_loras = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_compatible": item["is_compatible"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
            "downloads": item.get("downloads", 0),
            "is_nc": item.get("is_nc", False)
        }
        for item in data
    ]

device = "cuda" 

for item in sdxl_loras:
    saved_name = hf_hub_download(item["repo"], item["weights"])
    
    if not saved_name.endswith('.safetensors'):
        state_dict = torch.load(saved_name)
    else:
        state_dict = load_file(saved_name)
        
    item["saved_name"] = saved_name
    item["state_dict"] = state_dict #{k: v.to(device=device, dtype=torch.float16) for k, v in state_dict.items() if torch.is_tensor(v)}

gr_sdxl_loras = gr.State(value=sdxl_loras)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    torch_dtype=torch.float16,
)
original_pipe = copy.deepcopy(pipe)
pipe.to(device)

last_lora = ""
last_merged = False
last_fused = False
def update_selection(selected_state: gr.SelectData, sdxl_loras):
    lora_repo = sdxl_loras[selected_state.index]["repo"]
    instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
    new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
    weight_name = sdxl_loras[selected_state.index]["weights"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
    is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
    is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
    
    use_with_diffusers = f'''
    ## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
                        
    ## Use it with diffusers:
    '''
    if is_compatible:
        use_with_diffusers += f'''
        from diffusers import StableDiffusionXLPipeline
        import torch
    
        model_path = "stabilityai/stable-diffusion-xl-base-1.0"
        pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.load_lora_weights("{lora_repo}", weight_name="{weight_name}")
    
        prompt = "{instance_prompt}..."
        lora_scale= 0.9
        image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={{"scale": lora_scale}}).images[0]
        image.save("image.png")
        '''
    elif not is_pivotal:
        use_with_diffusers += "This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with `bmaltais/kohya_ss` LoRA class, check out this [Google Colab](https://colab.research.google.com/drive/14aEJsKdEQ9_kyfsiV6JDok799kxPul0j )"
    else:
        use_with_diffusers += f"This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with sdxl-cog `TokenEmbeddingsHandler` class, check out the [model repo](https://huggingface.co/{lora_repo}#inference-with-🧨-diffusers)"
    use_with_uis = f'''
    ## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111: 

    ### Download the `*.safetensors` weights of [here](https://huggingface.co/{lora_repo}/resolve/main/{weight_name})
    
    - [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
    - [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras)
    - [SD.Next guide](https://github.com/vladmandic/automatic)
    - [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/)
    '''
    return (
        updated_text,
        instance_prompt,
        gr.update(placeholder=new_placeholder),
        selected_state,
        use_with_diffusers,
        use_with_uis,
    )


def check_selected(selected_state):
    if not selected_state:
        raise gr.Error("You must select a LoRA")

def merge_incompatible_lora(full_path_lora, lora_scale):
    for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(multiplier)
                else:
                    multiplier = lora_scale

                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier,
                    full_path_lora,
                    pipe.vae,
                    pipe.text_encoder,
                    pipe.unet,
                    for_inference=True,
                )
                lora_model.merge_to(
                    pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
                )
                del weights_sd
                del lora_model
                gc.collect()

def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
    global last_lora, last_merged, last_fused, pipe

    if negative == "":
        negative = None

    if not selected_state:
        raise gr.Error("You must select a LoRA")
    repo_name = sdxl_loras[selected_state.index]["repo"]
    weight_name = sdxl_loras[selected_state.index]["weights"]
    full_path_lora = sdxl_loras[selected_state.index]["saved_name"]
    loaded_state_dict = sdxl_loras[selected_state.index]["state_dict"]
    cross_attention_kwargs = None
    if last_lora != repo_name:
        if last_merged:
            del pipe
            gc.collect()
            pipe = copy.deepcopy(original_pipe)
            pipe.to(device)
        elif(last_fused):
            pipe.unfuse_lora()
            pipe.unload_lora_weights()
        is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
        
        if is_compatible:
            pipe.load_lora_weights(loaded_state_dict)
            pipe.fuse_lora(lora_scale)
            last_fused = True
        else:
            is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
            if(is_pivotal):
                pipe.load_lora_weights(loaded_state_dict)
                pipe.fuse_lora(lora_scale)
                last_fused = True
                
                #Add the textual inversion embeddings from pivotal tuning models
                text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
                text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
                tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
                embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
                embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
                embhandler.load_embeddings(embedding_path)
                
            else:
                merge_incompatible_lora(full_path_lora, lora_scale)
                last_fused=False
            last_merged = True
            
    image = pipe(
        prompt=prompt,
        negative_prompt=negative,
        width=768,
        height=768,
        num_inference_steps=20,
        guidance_scale=7.5,
    ).images[0]
    last_lora = repo_name
    gc.collect()
    return image, gr.update(visible=True)

def shuffle_gallery(sdxl_loras):
    random.shuffle(sdxl_loras)
    return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras

def swap_gallery(order, sdxl_loras):
    if(order == "random"):
        return shuffle_gallery(sdxl_loras)
    else:
        sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
        return [(item["image"], item["title"]) for item in sorted_gallery], sdxl_loras


with gr.Blocks(css="custom.css") as demo:
    title = gr.HTML(
        """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
        elem_id="title",
    )
    selected_state = gr.State()
    with gr.Row():
        with gr.Box():
            order_gallery = gr.Radio(choices=["random", "likes", "downloads"], value="random", label="Order by")
            gallery = gr.Gallery(
                value=[(item["image"], item["title"]) for item in sdxl_loras],
                label="SDXL LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
        with gr.Column():
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")
            result = gr.Image(
                interactive=False, label="Generated Image", elem_id="result-image"
            )
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")

    with gr.Column(elem_id="extra_info"):
        with gr.Accordion(
            "Use it with: 🧨  diffusers, ComfyUI, Invoke AI, SD.Next, AUTO1111",
            open=False,
            elem_id="accordion",
        ):
            with gr.Row():
                use_diffusers = gr.Markdown("""## Select a LoRA first 🤗""")
                use_uis = gr.Markdown()
        with gr.Accordion("Submit a LoRA! 📥", open=False):
            submit_title = gr.Markdown(
                "### Streamlined submission coming soon! Until then [suggest your LoRA in the community tab](https://huggingface.co/spaces/multimodalart/LoraTheExplorer/discussions) 🤗"
            )
            with gr.Box(elem_id="soon"):
                submit_source = gr.Radio(
                    ["Hugging Face", "CivitAI"],
                    label="LoRA source",
                    value="Hugging Face",
                )
                with gr.Row():
                    submit_source_hf = gr.Textbox(
                        label="Hugging Face Model Repo",
                        info="In the format `username/model_id`",
                    )
                    submit_safetensors_hf = gr.Textbox(
                        label="Safetensors filename",
                        info="The filename `*.safetensors` in the model repo",
                    )
                with gr.Row():
                    submit_trigger_word_hf = gr.Textbox(label="Trigger word")
                    submit_image = gr.Image(
                        label="Example image (optional if the repo already contains images)"
                    )
                submit_button = gr.Button("Submit!")
                submit_disclaimer = gr.Markdown(
                    "This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
                )
    order_gallery.change(
        fn=swap_gallery,
        inputs=[order_gallery, gr_sdxl_loras],
        outputs=[gallery, gr_sdxl_loras],
        queue=False
    )
    gallery.select(
        update_selection,
        inputs=[gr_sdxl_loras],
        outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
        queue=False,
        show_progress=False,
    )
    prompt.submit(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
        outputs=[result, share_group],
    )
    button.click(
        fn=check_selected,
        inputs=[selected_state],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[prompt, negative, weight, selected_state],
        outputs=[result, share_group],
    )
    share_button.click(None, [], [], _js=share_js)
    demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False)
demo.queue(max_size=20)
demo.launch()