File size: 5,995 Bytes
8537019
 
c6643c7
8537019
3e68ccf
 
 
 
 
 
 
 
f845b93
c6643c7
3e68ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f845b93
3e68ccf
 
 
 
f845b93
 
 
 
3e68ccf
 
 
 
f845b93
 
3e68ccf
f845b93
3e68ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f845b93
3e68ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f845b93
 
3e68ccf
f845b93
3e68ccf
 
 
 
 
 
 
 
 
c6643c7
f845b93
 
 
 
 
 
c8feae1
c6643c7
 
 
 
 
 
 
 
8537019
 
 
c6643c7
8537019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e68ccf
8537019
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import json
import time
import metaphor_python as metaphor
import requests
from langchain import PromptTemplate
from langchain.llms import Clarifai

from global_config import GlobalConfig


prompt = None
llm_contents = None
llm_json = None
metaphor_client = None


def get_llm(use_gpt: bool) -> Clarifai:
    """
    Get a large language model.

    :param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required
    """

    if use_gpt:
        llm = Clarifai(
            pat=GlobalConfig.CLARIFAI_PAT,
            user_id=GlobalConfig.CLARIFAI_USER_ID_GPT,
            app_id=GlobalConfig.CLARIFAI_APP_ID_GPT,
            model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT,
            verbose=True,
            # temperature=0.1,
        )
    else:
        llm = Clarifai(
            pat=GlobalConfig.CLARIFAI_PAT,
            user_id=GlobalConfig.CLARIFAI_USER_ID,
            app_id=GlobalConfig.CLARIFAI_APP_ID,
            model_id=GlobalConfig.CLARIFAI_MODEL_ID,
            verbose=True,
            # temperature=0.1,
        )
    print(llm)

    return llm


def generate_slides_content(topic: str) -> str:
    """
    Generate the outline/contents of slides for a presentation on a given topic.

    :param topic: Topic/subject matter/idea on which slides are to be generated
    :return: The content
    """

    global prompt
    global llm_contents

    if prompt is None:
        with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file:
            template_txt = in_file.read().strip()

        prompt = PromptTemplate.from_template(template_txt)

    formatted_prompt = prompt.format(topic=topic)
    print(f'formatted_prompt:\n{formatted_prompt}')

    if llm_contents is None:
        llm_contents = get_llm(use_gpt=False)

    slides_content = llm_contents(formatted_prompt, verbose=True)

    return slides_content


def text_to_json(content: str) -> str:
    """
    Convert input text into structured JSON representation.

    :param content: Input text
    :return: JSON string
    """

    global llm_json

    content = content.replace('```', '')

    # f-string is not used in order to prevent interpreting the brackets
    with open(GlobalConfig.JSON_TEMPLATE_FILE, 'r') as in_file:
        text = in_file.read()
        # Insert the actual text contents
        text = text.replace('<REPLACE_PLACEHOLDER>', content)

    text = text.strip()
    print(text)

    if llm_json is None:
        llm_json = get_llm(use_gpt=True)

    output = llm_json(text, verbose=True)
    output = output.strip()

    first_index = max(0, output.find('{'))
    last_index = min(output.rfind('}'), len(output))
    output = output[first_index: last_index + 1]

    return output


def text_to_yaml(content: str) -> str:
    """
    Convert input text into structured YAML representation.

    :param content: Input text
    :return: JSON string
    """

    global llm_json

    content = content.replace('```', '')

    # f-string is not used in order to prevent interpreting the brackets
    text = '''
You are a helpful AI assistant.
Convert the given slide deck text into structured YAML output.
Also, generate and add an engaging presentation title. 
The output should be only correct and valid YAML having the following structure:

title: "..."
slides:
  - heading: "..."
    bullet_points:
      - "..."
      - "..."
  - heading: "..."
    bullet_points:
      - "..."
      - "...":  # This line ends with a colon because it has a sub-block
        - "..."
      - "..."


Text:
'''
    text += content
    text += '''




Output:
```yaml
'''

    text = text.strip()
    print(text)

    if llm_json is None:
        llm_json = get_llm(use_gpt=True)

    output = llm_json(text, verbose=True)
    output = output.strip()

    # first_index = max(0, output.find('{'))
    # last_index = min(output.rfind('}'), len(output))
    # output = output[first_index: last_index + 1]

    return output


def get_related_websites(query: str) -> metaphor.api.SearchResponse:
    """
    Fetch Web search results for a given query.

    :param query: The query text
    :return: The search results object
    """

    global metaphor_client

    if not metaphor_client:
        metaphor_client = metaphor.Metaphor(api_key=GlobalConfig.METAPHOR_API_KEY)

    return metaphor_client.search(query, use_autoprompt=True, num_results=5)


def get_ai_image(text: str) -> str:
    """
    Get a Stable Diffusion-generated image based on a given text.

    :param text: The input text
    :return: The Base 64-encoded image
    """

    url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs'''
    headers = {
        "Content-Type": "application/json",
        "Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}'
    }
    data = {
        "inputs": [
            {
                "data": {
                    "text": {
                        "raw": text
                    }
                }
            }
        ]
    }

    print('*** AI image generator...')
    print(url)

    start = time.time()
    response = requests.post(
        url=url,
        headers=headers,
        data=json.dumps(data)
    )
    stop = time.time()

    print('Response:', response, response.status_code)
    print('Image generation took', stop - start, 'seconds')
    img_data = ''

    if response.ok:
        print('*** Clarifai SDXL request: Response OK')
        json_data = json.loads(response.text)
        img_data = json_data['outputs'][0]['data']['image']['base64']
    else:
        print('Image generation failed:', response.text)

    return img_data


if __name__ == '__main__':
    # results = get_related_websites('5G AI WiFi 6')
    #
    # for a_result in results.results:
    #     print(a_result.title, a_result.url, a_result.extract)

    # get_ai_image('A talk on AI, covering pros and cons')
    pass