Spaces:
Paused
Paused
Commit
•
01d95b9
1
Parent(s):
a2bfbe9
Update previewer/modules.py
Browse files- previewer/modules.py +20 -11
previewer/modules.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
from torch import nn
|
2 |
|
3 |
-
|
|
|
4 |
class Previewer(nn.Module):
|
5 |
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
6 |
super().__init__()
|
7 |
self.blocks = nn.Sequential(
|
8 |
-
nn.Conv2d(c_in, c_hidden, kernel_size=1),
|
9 |
nn.GELU(),
|
10 |
nn.BatchNorm2d(c_hidden),
|
11 |
|
@@ -13,23 +14,31 @@ class Previewer(nn.Module):
|
|
13 |
nn.GELU(),
|
14 |
nn.BatchNorm2d(c_hidden),
|
15 |
|
16 |
-
nn.ConvTranspose2d(c_hidden, c_hidden//2, kernel_size=2, stride=2),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
nn.GELU(),
|
18 |
-
nn.BatchNorm2d(c_hidden//
|
19 |
|
20 |
-
nn.Conv2d(c_hidden//
|
21 |
nn.GELU(),
|
22 |
-
nn.BatchNorm2d(c_hidden//
|
23 |
|
24 |
-
nn.ConvTranspose2d(c_hidden//
|
25 |
nn.GELU(),
|
26 |
-
nn.BatchNorm2d(c_hidden//4),
|
27 |
|
28 |
-
nn.Conv2d(c_hidden//4, c_hidden//4, kernel_size=3, padding=1),
|
29 |
nn.GELU(),
|
30 |
-
nn.BatchNorm2d(c_hidden//4),
|
31 |
|
32 |
-
nn.Conv2d(c_hidden//4, c_out, kernel_size=1),
|
33 |
)
|
34 |
|
35 |
def forward(self, x):
|
|
|
1 |
from torch import nn
|
2 |
|
3 |
+
|
4 |
+
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
5 |
class Previewer(nn.Module):
|
6 |
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
7 |
super().__init__()
|
8 |
self.blocks = nn.Sequential(
|
9 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
10 |
nn.GELU(),
|
11 |
nn.BatchNorm2d(c_hidden),
|
12 |
|
|
|
14 |
nn.GELU(),
|
15 |
nn.BatchNorm2d(c_hidden),
|
16 |
|
17 |
+
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
18 |
+
nn.GELU(),
|
19 |
+
nn.BatchNorm2d(c_hidden // 2),
|
20 |
+
|
21 |
+
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
22 |
+
nn.GELU(),
|
23 |
+
nn.BatchNorm2d(c_hidden // 2),
|
24 |
+
|
25 |
+
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
26 |
nn.GELU(),
|
27 |
+
nn.BatchNorm2d(c_hidden // 4),
|
28 |
|
29 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
30 |
nn.GELU(),
|
31 |
+
nn.BatchNorm2d(c_hidden // 4),
|
32 |
|
33 |
+
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
34 |
nn.GELU(),
|
35 |
+
nn.BatchNorm2d(c_hidden // 4),
|
36 |
|
37 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
38 |
nn.GELU(),
|
39 |
+
nn.BatchNorm2d(c_hidden // 4),
|
40 |
|
41 |
+
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
42 |
)
|
43 |
|
44 |
def forward(self, x):
|