music-composer / app.py
skytnt's picture
default top k
94d4bcc
raw
history blame
16.4 kB
import argparse
import glob
import os.path
import time
import uuid
import gradio as gr
import numpy as np
import onnxruntime as rt
import tqdm
import json
from huggingface_hub import hf_hub_download
import MIDI
from midi_synthesizer import synthesis
from midi_tokenizer import MIDITokenizer
MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"
def softmax(x, axis):
x_max = np.amax(x, axis=axis, keepdims=True)
exp_x_shifted = np.exp(x - x_max)
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
def sample_top_p_k(probs, p, k, generator=None):
if generator is None:
generator = np.random
probs_idx = np.argsort(-probs, axis=-1)
probs_sort = np.take_along_axis(probs, probs_idx, -1)
probs_sum = np.cumsum(probs_sort, axis=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
mask = np.zeros(probs_sort.shape[-1])
mask[:k] = 1
probs_sort = probs_sort * mask
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
shape = probs_sort.shape
probs_sort_flat = probs_sort.reshape(-1, shape[-1])
probs_idx_flat = probs_idx.reshape(-1, shape[-1])
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
next_token = next_token.reshape(*shape[:-1])
return next_token
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
if generator is None:
generator = np.random
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = prompt
input_tensor = input_tensor[None, :, :]
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
with bar:
while cur_len < max_len:
end = False
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
next_token_seq = np.empty((1, 0), dtype=np.int64)
event_name = ""
for i in range(max_token_seq):
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64)
if i == 0:
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
if disable_patch_change:
mask_ids.remove(tokenizer.event_ids["patch_change"])
if disable_control_change:
mask_ids.remove(tokenizer.event_ids["control_change"])
mask[mask_ids] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask_ids = tokenizer.parameter_ids[param_name]
if param_name == "channel":
mask_ids = [i for i in mask_ids if i not in disable_channels]
mask[mask_ids] = 1
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
scores = softmax(logits / temp, -1) * mask
sample = sample_top_p_k(scores, top_p, top_k, generator)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = np.concatenate([next_token_seq, sample], axis=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
next_token_seq = next_token_seq[None, :, :]
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
cur_len += 1
bar.update(1)
yield next_token_seq.reshape(-1)
if end:
break
def create_msg(name, data):
return {"name": name, "data": data}
def send_msgs(msgs):
return json.dumps(msgs)
def run(model_name, tab, instruments, drum_kit, bpm, mid, midi_events, seed, seed_rand,
gen_events, temp, top_p, top_k, allow_cc):
mid_seq = []
bpm = int(bpm)
gen_events = int(gen_events)
max_len = gen_events
if seed_rand:
seed = np.random.randint(0, MAX_SEED)
generator = np.random.RandomState(seed)
disable_patch_change = False
disable_channels = None
if tab == 0:
i = 0
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
if bpm != 0:
mid.append(tokenizer.event2tokens(["set_tempo",0,0,0, bpm]))
patches = {}
if instruments is None:
instruments = []
for instr in instruments:
patches[i] = patch2number[instr]
i = (i + 1) if i != 8 else 10
if drum_kit != "None":
patches[9] = drum_kits2number[drum_kit]
for i, (c, p) in enumerate(patches.items()):
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
mid_seq = mid
mid = np.asarray(mid, dtype=np.int64)
if len(instruments) > 0:
disable_patch_change = True
disable_channels = [i for i in range(16) if i not in patches]
elif mid is not None:
mid = tokenizer.tokenize(MIDI.midi2score(mid))
mid = np.asarray(mid, dtype=np.int64)
mid = mid[:int(midi_events)]
for token_seq in mid:
mid_seq.append(token_seq.tolist())
max_len += len(mid)
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
init_msgs = [create_msg("visualizer_clear", None), create_msg("visualizer_append", events)]
t = time.time() + 1
yield mid_seq, None, None, seed, send_msgs(init_msgs)
model = models[model_name]
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
disable_channels=disable_channels, generator=generator)
events = []
for i, token_seq in enumerate(midi_generator):
token_seq = token_seq.tolist()
mid_seq.append(token_seq)
events.append(tokenizer.tokens2event(token_seq))
ct = time.time()
if ct - t > 0.5:
yield mid_seq, None, None, seed, send_msgs([create_msg("visualizer_append", events), create_msg("progress", [i + 1, gen_events])])
t = ct
events = []
mid = tokenizer.detokenize(mid_seq)
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
audio = synthesis(MIDI.score2opus(mid), soundfont_path)
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
yield mid_seq, "output.mid", (44100, audio), seed, send_msgs([create_msg("visualizer_end", events)])
def cancel_run(mid_seq):
if mid_seq is None:
return None, None, []
mid = tokenizer.detokenize(mid_seq)
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
audio = synthesis(MIDI.score2opus(mid), soundfont_path)
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
return "output.mid", (44100, audio), send_msgs([create_msg("visualizer_end", events)])
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
def hf_hub_download_retry(repo_id, filename):
print(f"downloading {repo_id} {filename}")
retry = 0
err = None
while retry < 30:
try:
return hf_hub_download(repo_id=repo_id, filename=filename)
except Exception as e:
err = e
retry += 1
if err:
raise err
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
40: "Blush", 48: "Orchestra"}
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
drum_kits2number = {v: k for k, v in number2drum_kits.items()}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
models_info = {"generic pretrain model": ["skytnt/midi-model", ""],
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"],
}
models = {}
tokenizer = MIDITokenizer()
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
for name, (repo_id, path) in models_info.items():
model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
model_base = rt.InferenceSession(model_base_path, providers=providers)
model_token = rt.InferenceSession(model_token_path, providers=providers)
models[name] = [model_base, model_token]
load_javascript()
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
"Midi event transformer for music generation\n\n"
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
" for faster running and longer generation\n\n"
"**Update v1.2**: Optimise the tokenizer and dataset"
)
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
js_msg.change(None, [js_msg], [], js="""
(msg_json) =>{
let msgs = JSON.parse(msg_json);
executeCallbacks(msgReceiveCallbacks, msgs);
return [];
}
""")
input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
type="value", value=list(models.keys())[0])
tab_select = gr.State(value=0)
with gr.Tabs():
with gr.TabItem("instrument prompt") as tab1:
input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()),
multiselect=True, max_choices=15, type="value")
input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value",
value="None")
input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255,
step=1,
value=0)
example1 = gr.Examples([
[[], "None"],
[["Acoustic Grand"], "None"],
[['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings',
'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"],
[['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet',
'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"],
[['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon',
'Oboe', 'Pizzicato Strings'], "Orchestra"],
[['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)',
'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"],
[["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
"Electric Bass(finger)"], "Standard"]
], [input_instruments, input_drum_kit])
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
step=1,
value=128)
example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
[input_midi, input_midi_events])
tab1.select(lambda: 0, None, tab_select, queue=False)
tab2.select(lambda: 1, None, tab_select, queue=False)
input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
step=1, value=0)
input_seed_rand = gr.Checkbox(label="random seed", value=True)
input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
step=1, value=opt.max_gen // 2)
with gr.Accordion("options", open=False):
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=10)
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
example3 = gr.Examples([[1, 0.98, 20], [1, 0.98, 12]], [input_temp, input_top_p, input_top_k])
run_btn = gr.Button("generate", variant="primary")
stop_btn = gr.Button("stop and output")
output_midi_seq = gr.State()
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(run, [input_model, tab_select, input_instruments, input_drum_kit, input_bpm,
input_midi, input_midi_events, input_seed, input_seed_rand, input_gen_events,
input_temp, input_top_p, input_top_k, input_allow_cc],
[output_midi_seq, output_midi, output_audio, input_seed, js_msg],
concurrency_limit=3)
stop_btn.click(cancel_run, [output_midi_seq], [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
app.launch(server_port=opt.port, share=opt.share, inbrowser=True)